50 resultados para VACANCY
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Strain and vacancy cluster behavior of vanadium and tungsten-doped Ba[Zr(0.10)Ti(0.90)]O(3) ceramics
Resumo:
Strain and vacancy clusters behavior of polycrystalline vanadium (V) and tungsten (W)-doped Ba[Zr(0.10)Ti(0.90)]O(3), (BZT:2%V) and (BZT:2%W) ceramics obtained by the mixed oxide method was evaluated. Substitution of V and W reduces the distortion of octahedral clusters, decreasing the Raman modes. Electron paramagnetic resonance data indicate that the addition of dopants leads to defects and symmetry changes in the BZT lattice. Remnant polarization and coercive field are affected by V and W substitution due the electron-relaxation mode. The unipolar strain E curves as a function of electric field reach its maximum value for BZT:2%V and BZT:2%W ceramics. (c) 2008 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]
Resumo:
The effect of the sintering method on the microstructural and electrical properties of (Pb(0.89)Nd(0.02)La(0.09))(Zr(0.65)Ti(0.35))O(3) (PNLZT) ceramics was studied by impedance spectroscopy. Structural and microstructural analyses were performed using x-ray and scanning electron microscopy techniques. Two different sintering routes were employed: the conventional and the hot-pressing sintering methods. The impedance analysis provided a convincing evidence for the existence of both grain (g) and grain boundary (gb) contributions to the conduction process. An equivalent circuit for the impedance behaviour has been proposed and discussed. The variation in the sintering method produces significant changes in the grain and grain boundary conductivities. For the grain effect, the main conduction mechanism has been associated with oxygen vacancy migration. Otherwise, for grain boundary conductivity the impedance behaviour has been discussed in terms of the brick-layer and the constriction resistance models (BLM and CRM, respectively).
Resumo:
Polycrystalline Ba0.5Sr0.5(Ti0.80Sn0.20)O-3 (BST:Sn) thin films with a perovskite structure were prepared by the soft chemical method on a platinum-coated silicon substrate from spin-coating technique. The resulting thin films showed a dense structure with uniform grain size distribution. The dielectric constant of the films estimated from C-V curve is around 1134 and can be ascribed to a reduction in the oxygen vacancy concentration. The ferroelectric nature of the film indicated by butterfly-shaped C-V curves and confirmed by the hysteresis curve, showed remnant polarization of 14 mu C/cm(2) and coercive field of 74 kV/cm at frequency of 1 MHz. At the same frequency, the leakage current density at 1.0 V is equal to 1.5 x 10(-7) A/cm(2). This work clearly reveals the highly promising potential of BST:Sn for application in memory devices. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The nature of defects in polycrystalline Bi4-xLaxTi3O12 (BLT) thin films with x=0.00, 0.25, 0.50, and 0.75 was evaluated by x-ray photoemission spectroscopy measurements. The influence of oxygen vacancies and substitution of Bi for La atoms were discussed. In the BLT thin films, it was found that the oxygen ions at the metal-oxygen octahedral were much more stable than those at the [Bi2O2] layers. on the other hand, for Bi4Ti3O12 (BIT) thin film, oxygen vacancies could be induced both at the titanium-oxygen octahedral and at the [Bi2O2] layers. The oxygen-vacancy defect pairs determined in BIT and Bi3.75La0.25Ti3O12 (BLT025) can pin the polarization of surrounding lattices leading to fatigue of capacitors. Meanwhile, the concentration of similar defect pairs is relatively low in heavily doped BIT films and then good fatigue resistance is observed.
Resumo:
The order-disorder transformation in the Ni-4.49 at.% Al alloy was studied using electrical resistivity measurements, microhardness measurements, differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The results confirmed the ordering behavior expected for Ni-Al dilute alloys and the suggested relation between resistivity changes and microhardness changes with antiferromagnetic spin ordering. The higher value obtained for the activation energy of vacancy migration was associated with a decrease in the Al concentration gradient near solute-depleted regions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)