18 resultados para Uniform ergodicity
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The problem of neutral fermions subject to an inversely linear potential is revisited. It is shown that an infinite set of bound-state solutions can be found on the condition that the fermion is embedded in an additional uniform background potential. An apparent paradox concerning the uncertainty principle is solved by introducing the concept of effective Compton wavelength.
Resumo:
We generalize a procedure proposed by Mancera and Hunt [P.F.A. Mancera, R. Hunt, Some experiments with high order compact methods using a computer algebra software-Part 1, Appl. Math. Comput., in press, doi: 10.1016/j.amc.2005.05.015] for obtaining a compact fourth-order method to the steady 2D Navier-Stokes equations in the streamfunction formulation-vorticity using the computer algebra system Maple, which includes conformal mappings and non-uniform grids. To analyse the procedure we have solved a constricted stepped channel problem, where a fine grid is placed near the re-entrant corner by transformation of the independent variables. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some dynamical properties of a particle suffering the action of a generic drag force are obtained for a dissipative Fermi Acceleration model. The dissipation is introduced via a viscous drag force, like a gas, and is assumed to be proportional to a power of the velocity: F alpha -nu(gamma). The dynamics is described by a two-dimensional nonlinear area-contracting mapping obtained via the solution of Newton's second law of motion. We prove analytically that the decay of high energy is given by a continued fraction which recovers the following expressions: (i) linear for gamma = 1; (ii) exponential for gamma = 2; and (iii) second-degree polynomial type for gamma = 1.5. Our results are discussed for both the complete version and the simplified version. The procedure used in the present paper can be extended to many different kinds of system, including a class of billiards problems.
Resumo:
For eta >= 0, we consider a family of damped wave equations u(u) + eta Lambda 1/2u(t) + au(t) + Lambda u = f(u), t > 0, x is an element of Omega subset of R-N, where -Lambda denotes the Laplacian with zero Dirichlet boundary condition in L-2(Omega). For a dissipative nonlinearity f satisfying a suitable growth restrictions these equations define on the phase space H-0(1)(Omega) x L-2(Omega) semigroups {T-eta(t) : t >= 0} which have global attractors A(eta) eta >= 0. We show that the family {A(eta)}(eta >= 0), behaves upper and lower semi-continuously as the parameter eta tends to 0(+).
Resumo:
In this paper we generalize the concept of geometrically uniform codes, formerly employed in Euclidean spaces, to hyperbolic spaces. We also show a characterization of generalized coset codes through the concept of G-linear codes.
Resumo:
This research presents a systematic procedure to obtain estimates, via extended Lyapunov functions, of attracting sets of a class of nonlinear systems, as well as an estimate of their stability regions. The considered class of nonlinear systems, called in this note the extended Lurie system, consists of nonlinear systems like those of the Lurie problem where one of the nonlinear functions can violate the sector conditions of the Lurie problem around the origin. In case of nonautonomous systems the concept of absolute stability is extended and uniform estimates of the attracting set are obtained. Two classical nonlinear systems, the forced duffing equation and the Van der Pol system, are analyzed with the proposed procedure.
Resumo:
The consequences of the use of embedded crack finite elements with uniform discontinuity modes (opening and sliding) to simulate crack propagation in concrete are investigated. It is shown the circumstances in which the consideration of uniform discontinuity modes is not suitable to accurately model the kinematics induced by the crack and must be avoided. It is also proposed a technique to embed cracks with non-uniform discontinuity modes into standard displacement-based finite elements to overcome the shortcomings of the uniform discontinuity modes approach.
Resumo:
The electronic states of quantum rings with centerlines of arbitrary shape and non-uniform width in a threading magnetic field are calculated. The solutions of the Schrodinger equation with Dirichlet boundary conditions are obtained by a variational separation of variables in curvilinear coordinates. We obtain a width profile that compensates for the main effects of the curvature variations in the centerline. Numerical results are shown for circular, elliptical, and limacon-shaped quantum rings. We also show that smooth and tiny variations in the width may strongly affect the Aharonov-Bohm oscillations.
Resumo:
The preparation of spherical Y2O2S and Y2O2S:Eu particles using a solid-gas reaction of monodispersed precursors with elemental sulfur vapor under an argon atmosphere has been investigated. The precursors, undoped and doped yttrium basic carbonates, are synthesized by aging a stock solution containing the respective cation chloride and urea at 82-84 °C. Y2O2S and Y2O2S:Eu were characterized in terms of their composition, crystallinity and morphology by chemical analysis, X-ray powder diffraction (XRD), IR spectroscopy, and scanning electron microscopy (SEM). The Eu-doped oxysulfide was also characterized by atomic absorption spectrophotometry and luminescence spectroscopy. The spherical morphology of oxysulfide products and of basic carbonate precursors suggests a topotatic inter-relationship between both compounds.
Resumo:
A general technique to embed non-uniform displacement discontinuities into standard solid finite elements is presented. The technique is based on the decomposition of the kinematic fields into a component related to the deformation of the solid portion of the element and one related to the rigid-body motion due to a displacement discontinuity. This decomposition simplifies the incorporation of discontinuity interfaces and provides a suitable framework to account for non-uniform discontinuity modes. The present publication addresses two families of finite element formulations: displacement-based and stress hybrid finite element. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
When the food supply flnishes, or when the larvae of blowflies complete their development and migrate prior to the total removal of the larval substrate, they disperse to find adequate places for pupation, a process known as post-feeding larval dispersal. Based on experimental data of the Initial and final configuration of the dispersion, the reproduction of such spatio-temporal behavior is achieved here by means of the evolutionary search for cellular automata with a distinct transition rule associated with each cell, also known as a nonuniform cellular automata, and with two states per cell in the lattice. Two-dimensional regular lattices and multivalued states will be considered and a practical question is the necessity of discovering a proper set of transition rules. Given that the number of rules is related to the number of cells in the lattice, the search space is very large and an evolution strategy is then considered to optimize the parameters of the transition rules, with two transition rules per cell. As the parameters to be optimized admit a physical interpretation, the obtained computational model can be analyzed to raise some hypothetical explanation of the observed spatiotemporal behavior. © 2006 IEEE.