85 resultados para Thermal degradation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The non-isothermal data given by TG curves for poly(3-hydroxybutyrate) (PHB) were studied in order to obtain a consistent kinetic model that better represents the PHB thermal decomposition. Thus, data obtained from the dynamic TG curves were suitably managed in order to obtain the Arrhenius kinetic parameter E according to the isoconversional F-W-O method. Once the E parameters is found, a suitable logA and kinetic model (f(alpha)) could be calculated. Hence, the kinetic triplet (E +/- SD, logA +/- SD and f(alpha)) obtained for the thermal decomposition of PHB under non-isothermal conditions was E=152 +/- 4 kJ mol(-1), logA=14.1 +/- 0.2 s(-1) for the kinetic model, and the autocatalytic model function was: f(alpha)=alpha(m)(1-alpha)(n)=alpha(0.42)(1-alpha)(0.56).
Resumo:
The thermal decomposition of ammonium perchlorate (AP)/hydroxyl-terminated-polybutadiene (HTPB), the AP/HTPB solid propellant, was studied at different heating rates in dynamic nitrogen atmosphere. The exothermic reaction kinetics was studied by differential scanning calorimetry (DSC) in non-isothermal conditions. The Arrhenius Parameters were estimated according to the Ozawa method. The calculated activation energy was 134.5 W mol(-1), the pre-exponential factor, A, was 2.04.10(10) min(-1) and the reaction order for the global composite decomposition was estimated in 0.7 by the kinetic Shimadzu software based on the Ozawa method. The Kissinger method for obtaining the activation energy value was also used for comparison. These results are discussed here.
Resumo:
HDPE and PVC geomembranes are sensitive to changes in their properties when in contact with high temperatures. The effects of hot temperature on polymeric geomembranes are assessed by the ASTM D794 and ASTM D5721.This paper brings an analysis of degradation of the Poly Vinyl Chloride (PVC) and High Density Poly Ethylene (HDPE) geomembranes when exposed to conventional and air oven after specific periods.. Mechanical and physical properties were evaluated. OIT tests were also performanced to evaluate the level of oxidation degradation occurred on the HDPE geomembranes. Geomembranes of two thicknesses were tested: 1.0, 2.0 nun (PVC) and 0.8, 2.5 mm, (HDPE). The results obtained show, for example, that after the last period of exposure, the PVC geomembranes (1.0, 2.0 mm) were more rigid and stiffer than fresh samples. The HDPE geomembranes, on the other hand, when exposed to heat presented increases in deformation. OIT tests showed efficient to detect some level of degradation on the HDPE geomembranes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Latex collected from natural rubber trees forming membranes can be used as biomaterials in several fields being the temperature a key parameter. Thermogravimetry (TG) coupled to Fourier transform infrared spectroscopy (FTIR) is a useful technique to investigate the thermal degradation of both latex and cast films (membranes), wich were obtained from Hevea brasiliensis (RRIM 600 clone) and used without stabilization. The membranes were prepared by casting the latex onto a glass substrate at 65 degrees C for 6 h. The thermal degradation was followed by FTIR spectra acquisition along the process, allowing the identification of the gaseous components evolved upon the thermal treatment. According to TG measurements, the main processes of thermal degradation of the latex and membranes occur at three temperature intervals for both.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Poly(3-hydroxybutyrate), PHB, has been structurally modified with maleic anhydride, MA, in the presence of triethylamine, TEA. Glass transition, melting, and crystallization temperature, obtained from DSC curves, and thermal degradation temperatures obtained from TG ones, were employed to evaluate the influence of the MA proportion on the modification in the PHB chain. According to the results, most of chain modification reactions are the 80/20 and 90/10 proportions. Observations suggest that most chain modification reactions occur when the ratio of PHB/MA is 80/20 or 90/10. This suggests that modifications of PHB in the presence of MA involve main chain scission.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Poly(3-hydroxybutyrate), PHB has been structurally modified through reaction with maleic anhydride, MA. Transesterification reaction was carried out fixing the PHB and MA and besides time and temperature the concentration of the triethylamine (used as catalyst) was changed. Glass transition, melting and crystallization temperature obtained from DSC curves and thermal degradation temperatures obtained from TG traces were used to evaluate the influence of the reaction conditions on the modification of PHB according to factorial design. on the base of the results the optimum conditions are to perform the PHB modification reaction with MA reaction at 110 degrees C for 1 h with 5% v/v triethylamine.
Resumo:
High density poly(ethylene) has been submitted to thermal degradation alone, and in the presence of silicoaluminophosphate SAPO-37. The processes were carried out in a reactor connected on line to a gas chromatograph/mass spectrometer in order to analyze the evolved products. Polymer degradation was also evaluated by thermogravimetry, from room temperature until 800 degreesC, under nitrogen dynamic atmosphere, with multiple heating rates. From TG curves, the activation energy related to degradation process was calculated using the Flynn and Wall multiple heating rate kinetic model for pure polymer (PE) and for polymer in the presence of catalyst (PE/S37). SAPO-37 showed good selectivity for low molecular mass hydrocarbons in PE catalytic degradation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two different cationic polymers of the same chemical type and with very similar chemical structures were reacted with a natural bentonite over a wide range of polymer/clay ratios. This study involved the synthesis of cationic aliphatic ammonium polyionenes, specifically 3,6-ionene and 3,6-dodecylionene. Ionenes are ion-containing polymers that contain quaternary nitrogen atoms in the main macromolecular chain as opposed to a pendant chain. The CHN content, basal spacing, and elemental composition of each of the polymer-clay complexes were analyzed by X-ray diffraction, X-ray fluorescence, and thermogravimetry. All the polycations reacted to form interlayer complexes with clay, which displaced more Na+ and little Ca2+. Sodium and calcium were both present as interlayer cations in the clay and its complexes. The TG/DTG curves show that both polymers underwent thermal degradation in more than one stage. Specifically, 3,6-ionene was found to undergo two stages of decomposition and 3,6-dodecylionene undergo three stages. The behavior of the TG/DTG curves and the activation energy values suggest that 3,6-dodecylionene (E = 174,85 kJ mol-1) complexes have greater thermal stability than 3,6-ionene (E = 115,52 kJ mol-1) complexes. The mechanism of degradation suggests a direct interaction with the dodecyl chain containing 12 carbons, which are present in 3,6-dodecylionene but not in 3,6-ionene. © 2012 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)