12 resultados para Thermal Tolerance

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mycelia-to-yeast (M-Y) transition, thermal tolerance and virulence profiles were evaluated for nine isolates of Paracoccidioides brasiliensis, including samples from two of the three recently discovered cryptic species, as well as their relation to the partial sequence and transcription of the hsp70 gene. The isolates Bt84 and T10 (from PS2 species) took more time to convert to yeast form and presented elongated yeast cells at 36 degrees C. Arthroconidia production was also observed during the M-Y transition for some isolates. Our data confirm that the hsp70 transcription may be associated with thermal tolerance, but this does not seem to be directly related to high virulence profiles. The partial sequencing of this gene allowed the separation of our isolates into two clusters that correspond to the two sympatric cryptic species occurring in an area hyperendemic for PCM (Botucatu, SP, Brazil).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The neotropical millipede, Gymnostreptus olivaceus, lives at ambient temperatures of about 20°C. Its thermal tolerance was tested after acclimation to lower and higher temperatures as occurs under winter and summer conditions in the south and southeast regions of Brazil. An increase in tolerance to low temperatures was found in adapted specimens. The ecological aspects of this capability are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biologia Geral e Aplicada - IBB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High critical temperature superconductors are evolving from a scientific research subject into large-scale application devices. In order to meet this development demand they must withstand high current capacity under mechanical loads arising from thermal contraction during cooling from room temperature down to operating temperature (usually 77 K) and due to the electromagnetic forces generated by the current and the induced magnetic field. Among the HTS materials, the Bi2Sr2Ca2Cu3Ox, compound imbedded in an Ag/AgMg sheath has shown the best results in terms of critical current at 77 K and tolerance against mechanical strain. Aiming to evaluate the influence of thermal stress induced by a number of thermal shock cycles we have evaluated the V-I characteristic curves of samples mounted onto semicircular holders with different curvature radius (9.75 to 44.5 mm). The most deformed sample (epsilon = 1.08%) showed the largest reduction of critical current (40%) compared to the undeformed sample and the highest sensitivity to thermal stress (I-c/I-c0 = 0.5). The V-I characteristic curves were also fitted by a potential curve displaying n-exponents varying from 20 down to 10 between the initial and last thermal shock cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously, we reported that thermal conditioning at 39degreesC on days 13-17 of incubation of broiler eggs enabled thermotolerance during post-hatch growth (J. Therm. Biol. 28 (2003) 133). Tolerance to a temperature of 30degreesC was accompanied by changes in thyroid hormones and metabolic parameters. In the current study, we determined the mechanism of epigenetic heat adaptation during embryonic age by measuring blood physiological parameters that may be associated with the ultimate effects of thermal conditioning. Hatching eggs from Ross breeders were subjected to heat treatment of 39degreesC at days 13, 14, 15, 16 and 17 of incubation for 2 h per day. Control eggs were incubated at 37.6degreesC. Samples of eggs were withdrawn on each day of thermal conditioning and at internal pipping (IP) to obtain blood samples from embryos. The remaining eggs were weighed at day 18 and transferred to hatchers. The timing of IP, external pipping (EP) and hatching were monitored every 2 h. At hatch, chicks were weighed and hatchability was determined. Blood samples were obtained from samples of day-old chicks. T3, T4, corticosterone, pCO(2), pO(2) levels were determined in the blood. Blood pH was measured and T3/T4 ratios were calculated. Heat conditioning significantly increased corticosterone and pO(2) levels and blood pH but depressed pCO(2) at day 14. These were followed by a significant depression of T4 level on day 15. Remarkably, at day 16, all these parameters were back to normal as in the control embryos. Hatching was delayed by thermal conditioning probably as a result of the depressed corticosterone levels at IP. Hatchability was also lower in the heat-treated group but 1-day old chick weights were comparable to those of the controls. The result suggests that epigenetic thermal conditioning involves changes in these physiological parameters and probably serve as a method for epigenetic temperature adaptation since the same mechanisms are employed for coping with heat during post-embryonic growth. It also suggests that days 14-15 may be the optimal and most sensitive timing for evoking this mechanism during embryonic development. The adverse effects of heat treatment observed in this study may have been due to the continued exposure to heat until day 17. Fine-tuning thermal conditioning to days 14-15 only may improve these production parameters. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to assess the heat tolerance of animals of two Portuguese (Alentejana and Mertolenga) and two exotic (Frisian and Limousine) cattle breeds, through the monitoring of physiological acclimatization reactions in different thermal situations characterized by alternate periods of thermoneutrality and heat stress simulated in climatic chambers. In the experiment, six heifers of the Alentejana, Frisian and Mertolenga breeds and four heifers of the Limousine breed were used. The increase in chamber temperatures had different consequences on the animals of each breed. When submitted to heat stress, the Frisian animals developed high thermal polypnea (more than 105 breath movements per minute), which did not prevent an increase in the rectal temperature (from 38.7 degrees C to 40.0 degrees C). However, only a slight depression in food intake and in blood thyroid hormone concentrations was observed under thermal stressful conditions. Under the thermal stressful conditions, Limousine animals decreased food intake by 11.4% and blood triiodothyronine (T3) hormone concentration decreased to 76% of the level observed in thermoneutral conditions. Alentejana animals had similar reactions. The Mertolenga cattle exhibited the highest capacity for maintaining homeothermy: under heat stressful conditions, the mean thermal polypnea increased twofold, but mean rectal temperature did not increase. Mean food intake decreased by only 2% and mean T3 blood concentration was lowered to 85,6% of the concentration observed under thermoneutral conditions. These results lead to the conclusion that the Frisian animals had more difficulty in tolerating high temperatures, the Limousine and Alentejana ones had an intermediate difficulty, and the Mertolenga animals were by far the most heat tolerant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Literature mentions propyl gallate (PG) as a non-toxic synthetic antioxidant that can be used as a food additive due to its high tolerance to heat. It is important to understand the thermal properties and to identify the decomposition products of this substance, since it has been reported to be thermally stable at temperatures as high as 300 °C. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry-photovisual (DSC-photovisual), coupled thermogravimetry-infrared spectroscopy (TG-FTIR) analyses and spectroscopic techniques were used to study the food additive PG. The TG-DTA curves, which were performed with the aid of DSC-photovisual, provided information concerning the thermal stability and decomposition profiles of the compound. From the TG-FTIR coupled techniques, it was possible to identify n-propanol as a possible volatile compound released during the thermal decomposition of the antioxidant. A complete spectroscopic characterization in the ultraviolet, visible, near and middle infrared regions was performed in order to understand the spectroscopic properties of PG.