67 resultados para Theoretical density
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
SnO2 varistors doped with CoO, Cr2O3 and Nb2O5 were prepared by evaporation and decomposition of suspensions. The composition of the varistors was optimized to improve electrical properties, such as nonlinearity, leakage current and electrical stability. The best results were achieved with the following composition: 99.15% SnO2 +0.75% CoO+0.05% Cr2O3 +0.05% Nb2O5. Samples showed high density, reaching 99.5% of the theoretical density, as well as an homogeneous microstructure. The nonlinear coefficient was higher than 30 in the current range from 10(-7) to 10(-2) A/cm(2). The leakage current was 0.86 mu A/cm(2). These samples showed high stability of electrical parameters when they were exposed to high current of 27 mA/cm(2) for different time periods up to 30 min. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Addition of 0.5 mol% of CoO into SnO2 promotes densification of this oxide to 99% of the theoretical density during sintering. TEM in this system reveals that after sintering at 1210 degrees C a secondary phase of Co2SnO4 is precipitated at the SnO2 grain boundaries during cooling. This phase is formed by diffusion of Co ions from the bulk to the grain boundary during sintering leaving needle-like defects at the grain bulk. The high resolution TEM micrograph of this system sintered at 1210 degrees C and 1400 degrees C showed an amorphous grain boundary region low in cobalt, indicating that the Co2SnO4 phase is precipitated from this region. (C) 1999 Elsevier B.V. Limited and Techna S.r.l. All rights reserved.
Resumo:
Composites containing a matrix of nanometric Ce-stabilized zirconia with an addition of micrometric monoclinic zirconia were processed by slip casting and sintered at a relatively low temperature. The ratio between nanometric and micrometric particles was determined according to the viscosity of the suspensions and the final density of the pellets. An optimum amount of micrometric particles was necessary to achieve improved suspension dispersion and higher pellet density. The amount of deflocculant in the suspensions containing the mixture of micrometric and nanometric particles was optimized by viscosity measurements. The pellets were characterized by dilatometry, Hg porosimetry, density measurement (the Archimedes method) and scanning electron microscopy. Despite the low green density obtained (35-38% of the theoretical density), densities as high as 97.5% were achieved after sintering. (C) 2001 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
The dielectric properties and loss of Bi1.5ZnSb1.5O7 a poor-semiconducting ceramic were investigated by impedance spectroscopy, in the frequency range from 5 Hz to 13 MHz. Electric measurements were performed from 100 to 700 degreesC. Pyrochlore type phase was synthesized by the polymeric precursor method. Dense ceramic with 97% of the theoretical density was prepared by sintering via constant heating rate. The dielectric permittivity dependence as a function of frequency and temperature showed a strong dispersion at frequency lower than 10 kHz. The losses (tan delta) exhibit slight dependence with the frequency at low temperatures presenting a strong increase at temperatures higher than 400 degreesC. A decrease of the loss magnitude occurs with increasing frequency. Relaxation times were extracted using the dielectric functions Z(omega) and M(omega). The plots of the relaxation times tau(Z'), and tau(M) as a function of temperature follow the Arrhenius law, where a single slope is observed with activation energy values equal to 1.38 and 1.37 eV, respectively. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In this study, a bioactive zirconia-toughened alumina (ZTA) composite was developed for orthopedic applications. This composite was obtained by slip casting of suspension powder mixtures.Biomimetic processes were used to grow a bone-like apatite layer on composite substrates using sodium silicate solution as a nucleating agent and simulated body fluids. The composites, with or without coating, were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS), and their apparent density was determined by the Archimedes method. The composites obtained by this process possessed the expected stiffness and dimensions and their density values were similar to those of the composite's theoretical density (98.8%TD). The morphology of the hydroxyapatite formed on the composite surface was homogeneous and composed of small globules, characterizing a carbonated hydroxyapatite. The results of the tests indicated that the method employed to produce the composite and its coating was efficient under the conditions of this study. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper reports on a study of the: effect of replacing CoO by MnO2 on the sintering and electrical propel-ties of the 98.95% SnO2 + (1 - x)% CoO + x% MnO2 + 0.05% Ta2O5 system. All the samples were compacted into pellets and sintered at 1300 degrees C for 1 h, when they reached densities of about 98% of the theoretical density. An X-ray diffraction (XRD) analysis showed no other detectable phases other than SnO2. Current-voltage characterization indicated varistor behavior in the systems. The non-linear coefficient (alpha) and breakdown electric field (Eb) increased as the amount of MnO2 was increased. The results are explained in terms of an electric barrier modification, due to the presence of adsorbed negative oxygen species at the grain boundary inter face. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Additions of 0.5 to 2.0 mol% of CoO or MnO2 onto SnO, promote densification of this oxide up to 99% of theoretical density. The temperature of the maximum shrinkage rate (TM) and the relative density in the maximum densification rate (p*) during constant sintering heating rate depend on the dopant concentration. Thus, dopant concentration controls the densifying and nondensifying mechanisms during sintering. The densification of SnO2 witih addition of CoO or MnO, is explained in terms of the creation of oxygen vacancies.
Resumo:
Ultra-fine NaNbO3 powder was prepared by the use of polymeric precursors. X-ray diffraction (XRD) results showed that this niobate nucleates from the amorphous precursor, with no intermediate phases, at low temperature (500°C). Studies by XRD and nitrogen adsorption/desorption showed that powders with high crystallinity ( ≈ 100%) and high surface areas (>20 m2/g) are obtained after calcination at 700°C for 5 h. Compacts of calcined powders showed high sinterability reaching 98% of theoretical density when sintered at 1190°C for 3 h.
Resumo:
For microwave applications, including mobile and satellite communications, ceramic resonators should have a high dielectric constant, low dielectric losses, and high frequency stability. In this sense, TiO2-ZrO 2 ceramics have been investigated as a function of sintering behavior, phase composition, and microstructure. The ceramics were densified reaching a value of about 86% of theoretical density at 1400°C sintering temperature. The ceramics are prepared by mixing raw materials with the following TiO2-ZrO2 weight % ratio: 100 to 0, 90 to 10, and 80 to 20, respectively. The measured dielectric constants are between 79 and 88 values, while the quality factor due to dielectric losses are between 2820 and 5170. These results point out the influence of Ti/Zr ratio on controlling the dielectric properties. © (2010) Trans Tech Publications.
Resumo:
This work presents the structural characterization of Ti-10Si-5B and Ti-20Si-10B (at-%) alloys produced by high-pressure assisted sintering. Sintering was performed in air at 1100 and 1200°C for 60 s using pressure levels of 5 GPa. Structural evaluation of sintered samples was conducted by means of scanning electron microscopy and energy dispersive spectrometry. Samples were successfully consolidated after sintering, which presented theoretical density values higher than 99%. The microstructures of the sintered Ti-10Si-5B and Ti-20Si-10B alloys revealed the presence of the TiSS, TiB, TiB2, Ti5Si3, Ti5Si4, TiSi, and TiSi2.phases. A small amount of Ti6Si2B was formed after high-pressure assisted sintering of the Ti-20Si-10B alloy (5GPa, 1100°C for 60 s) indicating that equilibrium structures were not achieved during short sintering times. No oxygen and carbon contamination was detected in structures of Ti-Si-B alloys after high-pressure sintering at 1100 and 1200°C without controlled atmosphere. © (2012) Trans Tech Publications, Switzerland.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Density functional calculation at B3LYP level was employed to study the surface oxygen vacancies and the doping process of Co, Cu and Zn on SnO2 (110) surface models. Large clusters, based on (SnO2)(15) models, were selected to simulate the oxidized (Sn15O30), half-reduced (Sn15O29) and the reduced (Sn15O28) surfaces. The doping process was considered on the reduced surfaces: Sn13Co2O28, Sn13Cu2O28 and Sn13Zn2O28. The results are analyzed and discussed based on a calculation of the energy levels along the bulk band gap region, determined by a projection of the monoelectron level structure on to the atomic basis set and by the density of states. This procedure enables one to distinguish the states coming from the bulk, the oxygen vacancies and the doping process, on passing from an oxidized to a reduced surface, missing bridge oxygen atoms generate electronic levels along the band gap region, associated with 5s/5p of four-/five-fold Sn and 2p of in-plane O centers located on the exposed surface, which is in agreement with previous theoretical and experimental investigations. The formation energy of one and two oxygen vacancies is 3.0 and 3.9 eV, respectively. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
B3LYP/6-31++G** calculations to study seven tautomers of 5-methylcytosine in aqueous media have been carried out. Optimized geometries and relative stabilities for the different tautomers have been calculated in the gas phase, including interaction with two discrete water molecules and taking into account the solvent effects by using the self-consistent reaction field theory. The role of specific and bulk contributions of solvent effect on the observable properties of the 5-methylcytosine is clarified. The amino-oxo form is the most abundant tautomer in aqueous media. A reaction pathway connecting amino-oxo and amino-hydroxy forms along the corresponding transition structures has been characterized. Good agreement between theoretical and available experimental results of harmonic vibration frequencies is found. (C) 2001 Elsevier B.V. B.V. All rights reserved.