115 resultados para Theoretical and experimental
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Intense violet-blue photoluminescence (PL) emission at room temperature was verified in BaZrO3 (BZO) powders with structural order-disorder. Ab-initio calculations, ultraviolet-visible absorption spectroscopy and PL were performed. Theoretical results showed that the local disorder in the network-formed Zr clusters present an important role in the formation of hole-electron pair. The experimental data and theoretical results are in agreement, indicating that the PL emission in BZO powders can be related to the structural order-disorder degree in the lattice. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Disordered and crystalline Ba0.45Sr0.55TiO3 (BST) powder processed at low temperature was synthesized by the polymeric precursor method. The single-phase perovskite structure of the ceramics was identified by the Raman and X-ray diffraction techniques. Photoluminescence at room temperature was observed only in a disordered BST sample. Increasing the calcination time intensified the photoluminescence (PL), which reached its maximum value in the sample heat treated at 300 degrees C for 30 h. This emission may be correlated with the structural disorder. Periodic ab initio quantum-mechanical calculations using the CRYSTAL98 program can yield important information regarding the electronic and structural properties of crystalline and disordered solids. The experimental and theoretical results indicate the presence of intermediary energy levels in the band gap. This is ascribed to the break in symmetry, which is responsible for visible photoluminescence in the material's disordered state at room temperature. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The IR-spectrum of the isonicotinamide molecule (C(2)H(2)NC(3)H(2)CONH(2)) is studied by means of theoretical and experimental methods. For an appropriate representation of the molecular environment, Gaussian basis sets to the atoms of these molecule are built and then contracted (5s and 6s5p). For evaluation of the quality of contracted basis sets in molecular calculations, we have accomplished calculations of the total and the orbital (HOMO and HOMO-1) energies in the HF-Roothaan method for the molecule studied. The results obtained with the contracted basis sets [5s/6s5p] are compared to values obtained with our (21s/22s14p) basis sets and with those obtained with the D95, 6-31G, and 6-311G basis sets from literature. It was added one d polarization function in the [6s5p] contracted basis set for C ((3)P) atom, which was used in combination with the basis sets for H ((2)S), N ((4)S). and O((3)P) atoms to calculate the infrared spectrum of isonicotinamide. The calculations were performed at B3LYP level and were compared to corresponding experimental values also obtained in our laboratory. The theoretical results in comparison with the corresponding experimental values indicate a very good interpretation of the IR-spectrum and that the strategy of an appropriate representation of the molecular environment through the basis sets is an effective alternative to investigate vibrational theoretical properties of the nicotinamide molecule. (c) 2006 Published by Elsevier B.V.
Resumo:
Thin films of barium and strontium titanate (BST), synthesized by the polymeric precursor solution and spin coated on [Pt (140nm)/Ti (10 nM)/SiO2(1000 nm)/Si] substrates were found to be photoluminescent at room temperature when heat treated below 973 K, i.e. before their crystallization. First principles quantum mechanical techniques, based on density functional theory (DFT) were employed to study the electronic structure of two periodic models: one is standing for the crystalline BST thin film and the other one for the structurally disordered thin film. The aim is to compare the photoluminescence (PL) spectra of the crystalline and disordered thin films with their UV-vis spectra and with their computed electronic structures. The calculations show that new localized states are created inside the band gap of the crystalline model, as predicted by the UV-vis spectra. The study of the charge repartition in the structure before and after deformation of the periodic model shows that a charge gradient appears among the titanate clusters. This charge gradient, together with the new localized levels, gives favorable conditions for the trapping of holes and electrons in the structure, and thus to a radiative recombination process. Our models are not only consistent with the experimental data, they also allow to explain the relations between structural disorder and photoluminescence at room temperature. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we report an experimental and theoretical study based on a periodic density functional investigation into selected compositions of Pb1-xCaxTiO3 (x=0.0, 0.25, 0.50, and 0.75). Based on our findings, we propose that the pseudocubic structure of these perovskites presents a long-range tendency for cubic symmetry, while the short-range displacements bring the solid solution to a tetragonal symmetry. The results are discussed in terms of x-ray diffraction, structural optimized parameters, Raman spectroscopy, band structure, density of states, Mulliken charge, and overlap population.
Resumo:
In this work, we studied the photocatalytic and the structural aspects of silicon wafers doped with Au and Cu submitted to thermal treatment. The materials were obtained by deposition of metals on Si using the sputtering method followed by fast heating method. The photocatalyst materials were characterized by synchrotron-grazing incidence X-ray fluorescence, ultraviolet-visible spectroscopy, X-ray diffraction, and assays of H(2)O(2) degradation. The doping process decreases the optical band gap of materials and the doping with Au causes structural changes. The best photocatalytic activity was found for thermally treated material doped with Au. Theoretical calculations at density functional theory level are in agreement with the experimental data.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cold-formed steel shapes have been widely employed in steel construction, where they frequently offer a lower cost solution than do traditional laminated shapes. A classic application of cold-formed steel shapes is purlins in the roof panel of industrial buildings, connected to the roof panel by means of screws. The combined effect of these two elements has been the subject of investigations in some countries. Design criteria were included in the AISI Code in 1991 and 1996. This paper presents and discusses the results obtained from bending tests carried out on shapes commonly used in Brazil, i.e., the channel and the simple lipped channel, Tests were carried out on double shapes with 4.5 and 6.0 meter spans, which were subjected to concentrated loads and braced against each other on the supports and at intermediary points in three different load situations. The panel shape was also analyzed experimentally, simulating the action of wind by means of a vacuum box designed specifically for this purpose. The test results were then compared to those obtained through the theoretical analysis, enabling us to extract important information upon which to base proposed design criteria for the new Brazilian code.
Resumo:
The influence of soil drill rod length on the N value in the SPT-T test has been studied extensively by Mello (1971), Schmertmann & Palacios (1979), Odebrecht et al. (2002) and Cavalcante (2002). This paper presents an analysis of the Standard Penetration Test supplemented with torque measurement (SPT-T). A theoretical study of the resistance of the rod material to torsion and bending indicated that the shear stress caused by the rod self-weight represents less than 1% of that caused by the torsional moment. An experimental study with electric torquemeters attached to a horizontal rod system, as well as two field tests in the vertical direction, were also carried out to compare and substantiate the results. The purpose of these tests was to analyze changes along the length of the rod in response to successive increments at 1-meter intervals. Torque measurements were taken at each increment of the length to ascertain the accuracy of the theoretical data. The difference between the applied torque and the measured torque at the end of rod system was lower than the minimum scale of mechanical torquemeters used in practice.
Resumo:
In this paper, a combined theoretical and experimental study on the electronic structure and photoluminescence (PL) properties of beta zinc molybdate (β-ZnMoO4) microcrystals synthesized by the hydrothermal method has been employed. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectroscopies. Their optical properties were investigated by ultraviolet-visible (UV-Vis) absorption spectroscopy and PL measurements. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level have been carried out. XRD patterns, Rietveld refinement, FT-Raman and FT-IR spectra showed that these crystals have a wolframite-type monoclinic structure. The Raman and IR frequencies experimental results are in reasonable agreement with theoretically calculated results. UV-Vis absorption measurements shows an optical band gap value of 3.17 eV, while the calculated band structure has a value of 3.22 eV. The density of states indicate that the main orbitals involved in the electronic structure of β-ZnMoO4 crystals are (O 2p-valence band and Mo 4d-conduction band). Finally, PL properties of β-ZnMoO4 crystals are explained by means of distortions effects in octahedral [ZnO6] and [MoO6] clusters and inhomogeneous electronic distribution into the lattice with the electron density map. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The tetrahydroquinoline derivatives can be easily synthesized through Povarov reaction and have several important biological activities. This work describes a comparative study for the unequivocal assignment of molecular structure of different tetrahydroquinoline derivatives, through a complete analysis of NMR 1D and 2D NMR spectra (1H, 13C, COSY, HSQC, and HMBC), and the correlation this data with theoretical calculations of energy-minimization and chemical shift (δ), employing the theory level of DFT/B3LYP with set of the cc-pVDZ basis. For these derivatives the experimental analyses and the theoretical model adopted were sufficient to obtain a good description of its structures, and these results can be used to assign the structure of various others tetrahydroquinoline derivatives. © 2013 Springer Science+Business Media New York.
Resumo:
This paper discusses the theoretical and experimental results obtained for the excitonic binding energy (Eb) in a set of single and coupled double quantum wells (SQWs and CDQWs) of GaAs/AlGaAs with different Al concentrations (Al%) and inter-well barrier thicknesses. To obtain the theoretical Eb the method proposed by Mathieu, Lefebvre and Christol (MLC) was used, which is based on the idea of fractional-dimension space, together with the approach proposed by Zhao et al., which extends the MLC method for application in CDQWs. Through magnetophotoluminescence (MPL) measurements performed at 4 K with magnetic fields ranging from 0 T to 12 T, the diamagnetic shift curves were plotted and adjusted using two expressions: one appropriate to fit the curve in the range of low intensity fields and another for the range of high intensity fields, providing the experimental Eb values. The effects of increasing the Al% and the inter-well barrier thickness on E b are discussed. The Eb reduction when going from the SQW to the CDQW with 5 Å inter-well barrier is clearly observed experimentally for 35% Al concentration and this trend can be noticed even for concentrations as low as 25% and 15%, although the Eb variations in these latter cases are within the error bars. As the Zhao's approach is unable to describe this effect, the wave functions and the probability densities for electrons and holes were calculated, allowing us to explain this effect as being due to a decrease in the spatial superposition of the wave functions caused by the thin inter-well barrier. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)