26 resultados para Steam-engines

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present article is to assess and compare the performance of electricity generation systems integrated with downdraft biomass gasifiers for distributed power generation. A model for estimating the electric power generation of internal combustion engines and gas turbines powered by syngas was developed. First, the model determines the syngas composition and the lower heating value; and second, these data are used to evaluate power generation in Otto, Diesel, and Brayton cycles. Four synthesis gas compositions were tested for gasification with: air; pure oxygen; 60% oxygen with 40% steam; and 60% air with 40% steam. The results show a maximum power ratio of 0.567 kWh/Nm(3) for the gas turbine system, 0.647 kWh/Nm(3) for the compression ignition engine, and 0.775 kWh/Nm(3) for the spark-ignition engine while running on synthesis gas which was produced using pure oxygen as gasification agent. When these three systems run on synthesis gas produced using atmospheric air as gasification agent, the maximum power ratios were 0.274 kWh/Nm(3) for the gas turbine system, 0.302 kWh/Nm(3) for CIE, and 0.282 kWh/Nm(3) for SIE. The relationship between power output and synthesis gas flow variations is presented as is the dependence of efficiency on compression ratios. Since the maximum attainable power ratio of CIE is higher than that of SIE for gasification with air, more research should be performed on utilization of synthesis gas in CIE. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam explosion process is employed for the successful extraction of cellulose nanofibrils from pineapple leaf fibres for the first time. Steam coupled acid treatment on the pineapple leaf fibres is found to be effective in the depolymerization and defibrillation of the fibre to produce nanofibrils of these fibres. The chemical constituents of the different stages of pineapple fibres undergoing treatment were analyzed according to the ASTM standards. The crystallinity of the fibres is examined from the XRD analysis. Characterization of the fibres by SEM. AFM and TEM supports the evidence for the successful isolation of nanofibrils from pineapple leaf. The developed nanocellulose promises to be a very versatile material having the wide range of biomedical applications and biotechnological applications, such as tissue engineering, drug delivery, wound dressings and medical implants. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, cellulose nanofibers were extracted from banana fibers via a steam explosion technique. The chemical composition, morphology and thermal properties of the nanofibers were characterized to investigate their suitability for use in bio-based composite material applications. Chemical characterization of the banana fibers confirmed that the cellulose content was increased from 64% to 95% due to the application of alkali and acid treatments. Assessment of fiber chemical composition before and after chemical treatment showed evidence for the removal of non-cellulosic constituents such as hemicelluloses and lignin that occurred during steam explosion, bleaching and acid treatments. Surface morphological studies using SEM and AFM revealed that there was a reduction in fiber diameter during steam explosion followed by acid treatments. Percentage yield and aspect ratio of the nanofiber obtained by this technique is found to be very high in comparison with other conventional methods. TGA and DSC results showed that the developed nanofibers exhibit enhanced thermal properties over the untreated fibers. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam reforming is the most usual method of hydrogen production due to its high production efficiency and technological maturity the use of ethanol for this purpose is an interesting option because it is a renewable and environmentally friendly fuel. The objective of this article is to present the physical-chemical, thermodynamic, and exergetic analysis of a steam reformer of ethanol, in order to produce 0.7 Nm(3)/h of hydrogen as feedstock of a 1 kW PEMFC the global reaction of ethanol is considered. Superheated ethanol reacts with steam at high temperatures producing hydrogen and carbon dioxide, depending strongly on the thermodynamic conditions of reforming, as well as on the technical features of the reformer system and catalysts. The thermodynamic analysis shows the feasibility of this reaction in temperatures about 206 degrees C. Below this temperature, the reaction trends to the reactants. The advance degree increases with temperature and decreases with pressure. Optimal temperatures range between 600 and 700 degrees C. However, when the temperature attains 700 degrees C, the reaction stability occurs, that is, the hydrogen production attains the limit. For temperatures above 700 degrees C, the heat use is very high, involving high costs of production due to the higher volume of fuel or electricity used. The optimal pressure is 1 atm., e.g., at atmospheric pressure. The exergetic analysis shows that the lower irreversibility is attained for lower pressures. However the temperature changes do not affect significantly the irreversibilities. This analysis shows that the best thermodynamic conditions for steam reforming of ethanol are the same conditions suggested in the physical-chemical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research of advanced technologies for energy generation contemplates a series of alternatives that are introduced both in the investigation of new energy sources and in the improvement and/or development of new components and systems. Even though significant reductions are observed in the amount of emissions, the proposed alternatives require the use of exhaust gases cleaning systems. The results of environmental analyses based on two configurations proposed for urban waste incineration are presented in this paper; the annexation of integer (Boolean) variables to the environomic model makes it possible to define the best gas cleaning routes based on exergetic cost minimisation criteria. In this first part, the results for steam cogeneration system analysis associated with the incineration of municipal solid wastes (MSW) is presented. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cell as molten carbonate fuel cell (MCFC) operates at high temperatures. Thus, cogeneration processes may be performed, generating heat for its own process or for other purposes of steam generation in the industry. The use of ethanol is one of the best options because this is a renewable and less environmentally offensive fuel, and is cheaper than oil-derived hydrocarbons, as in the case of Brazil. In that country, because of technical, environmental, and economic advantages, the use of ethanol by steam reforming process has been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where the highest volumes of products are produced, making possible a higher production of energy, that is, a more efficient use of resources. To attain this objective, mass and energy balances were performed. Equilibrium constants and advance degrees were calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree (according to Castellan 1986, Fundamentos da Fisica/Quimica, Editora LTC, Rio de Janeiro, p. 529, in Portuguese) is a coefficient that indicates the evolution of a reaction, achieving a maximum value when all the reactants' content is used of reforming increases when the operation temperature also increases and when the operation pressure decreases. However, at atmospheric pressure (1 atm), the advance degree tends to stabilize in temperatures above 700 degrees C; that is, the volume of supplemental production of reforming products is very small with respect to high use of energy resources necessary. The use of unused ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at the same tension, is higher at 700 degrees C than other studied temperatures such as 600 and 650 degrees C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8% and 58.9% in temperatures between 600 and 700 degrees C. The higher calculated current density is 280 mA/cm(2). The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced powers at 190 mA/cm(2) are 99.8, 109.8, and 113.7 mW/cm(2) for 873, 923, and 973 K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describe a process of internal steam reforming of ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper evaluates and quantifies the environmental impact from the use of some renewable fuels and fossils fuels in internal combustion engines. The following fuels are evaluated: gasoline blended with anhydrous ethyl alcohol (anhydrous ethanol), conventional diesel fuel, biodiesel in pure form and blended with diesel fuel, and natural gas. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. The ecological efficiency concept depends on the environmental impact caused by CO(2), SO(2), NO(x) and particulate material (PM) emissions. The exhaust gases from internal combustion engines, in the case of the gasoline (blended with alcohol), biodiesel and biodiesel blended with conventional diesel, are the less polluting; on the other hand, the most polluting are those related to conventional diesel. They can cause serious problems to the environment because of their dangerous components for the human, animal and vegetable life. The resultant pollution of each one of the mentioned fuels are analyzed, considering separately CO(2), SO(2), NO(x) and particulate material (PM) emissions. As conclusion, it is possible to calculate an environmental factor that represents, qualitatively and quantitative, the emissions in internal combustion engines that are mostly used in urban transport. Biodiesel in pure form (B100) and blended with conventional diesel as fuel for engines pollute less than conventional diesel fuel. The ecological efficiency for pure biodiesel (B100) is 86.75%: for biodiesel blended with conventional diesel fuel (B20, 20% biodiesel and 80% diesel), it is 78.79%. Finally, the ecological efficiency for conventional diesel, when used in engines, is 77.34%; for gasoline, it is 82.52%, and for natural gas, it is 91.95%. All these figures considered a thermal efficiency of 30% for the internal combustion engine. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a detailed thermodynamic analysis for an extraction-condensation steam turbine capable to drive a 40 MVA electricity generator in a sugar-alcohol factory was carried out. The use of this turbine in the cogeneration system showed that its efficiency contributed to increase the power generation, although the condensation reduces the overall efficiency of the plant. Sensibility analyses were performed to evaluate the behavior of the overall energy efficiency of a plant with the extraction-condensation turbine in function of the boiler efficiency, the specific consumption of steam in the processes and the condensation rate in the turbine. It was observed that the plant efficiency is very sensible to the condensation rate variation and it increases when there is an increase in the demand of steam for processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation reports the synthesis, characterization, and adsorption properties of a new nanomaterial based on organomodified silsesquioxane nanocages. The adsorption isotherms for CuCl,, CoCl2, ZnCl2, NiCl2, and FeCl3 from ethanol solutions were performed by using the batchwise method. The equilibrium condition is reached very quickly (3 min), indicating that the adsorption sites are well exposed. The results obtained in the flow experiments, showed a recovery of ca. 100% of the metal ions adsorbed in a column packed with 2 g of the nanomaterial, using 5 mL of 1.0 mol L-1 HCl solution as eluent. The sorption-desorption of the metal ions made possible the development of a method for preconcentration and determination of metal ions at trace level in commercial ethanol, used as fuel for car engines. The values determined by recommended method for plants 1, 2, and 3 indicated an amount of copper of 51, 60, and 78 mu g L-1, and of iron of 2, 15, and 13 mu g L-1, respectively. These values are very close to those determined by conventional analytical methods. Thus, these similar values demonstrated the accuracy of the determination by recommended method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the large penetration of the natural gas into the Brazilian energy structure, industries such as paper mills and chemical plants are analyzing the feasibility of implementing cogeneration schemes appropriate to this fuel. The analysis of the energy demand patterns of a chemical company from the photographic sector revealed the possibility of using combined cycles or diesel engine cogeneration schemes keeping the existing compression refrigeration units and steam or gas cycle cogeneration systems with absorption refrigeration units. In terms of economic attractiveness, an analysis based on the method of the internal rate of return was performed. The results indicated that the schemes composed by reciprocating engines and combined cycle with compression chillers, as well as the gas cycle scheme with absorption chiller, present return periods of up to 3 years, showing that the investment in cogeneration could be of interest for this plant. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new and fast procedure is proposed for cleaning autosampler cups using acid-vapor steam-cleaning with a miniaturized assembly in a microwave-heated sealed Teflon vessel. A glass cactus-shaped holder was made to support six polyethylene autosampler cups (volume, 2.0 mt) inside a 100 mt microwave vessel. Regent-grade nitric acid was added to the vessels, and the system was heated in a microwave oven for 5 min at 300 W. Chromium was determined by graphite-furnace atomic-absorption spectrophotometry. The blank values were lower with cleaned cups compared to untreated cups (i.e., as received from supplier). The quantification limits, estimated from detection limits established with Milli-Q water, were 0.66 and 0.95 mu g Cr L-1 for cleaned and untreated auto-sampler cups, respectively. (C) 1998 Elsevier B.V. B.V. All rights reserved.