21 resultados para Spin systems
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We propose an approach which allows one to construct and use a potential function written in terms of an angle variable to describe interacting spin systems. We show how this can be implemented in the Lipkin-Meshkov-Glick, here considered a paradigmatic spin model. It is shown how some features of the energy gap can be interpreted in terms of a spin tunneling. A discrete Wigner function is constructed for a symmetric combination of two states of the model and its time evolution is obtained. The physical information extracted from that function reinforces our description of phase oscillations in a potential. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We show how mapping techniques inherent to N2-dimensional discrete phase spaces can be used to treat a wide family of spin systems which exhibits squeezing and entanglement effects. This algebraic framework is then applied to the modified Lipkin-Meshkov-Glick (LMG) model in order to obtain the time evolution of certain special parameters related to the Robertson- Schrödinger (RS) uncertainty principle and some particular proposals of entanglement measure based on collective angular-momentum generators. Our results reinforce the connection between both the squeezing and entanglement effects, as well as allow to investigate the basic role of spin correlations through the discrete representatives of quasiprobability distribution functions. Entropy functionals are also discussed in this context. The main sequence correlations → entanglement → squeezing of quantum effects embraces a new set of insights and interpretations in this framework, which represents an effective gain for future researches in different spin systems. © 2013 World Scientific Publishing Company.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Starting from a phenomenological Hamiltonian originally written in terms of angular momentum operators we derive a new quantum angle-based Hamiltonian that allows for a discussion on the quantum spin tunneling. The study of the applicability of the present approach, carried out in calculations with a soluble quasi-spin model, shows that we are allowed to use our method in the description of physical systems such as the Mn12-acetate molecule, as well as the octanuclear iron cluster, Fe8, in a reliable way. With the present description the interpretation of the spin tunneling is seen to be direct, the spectra and energy barriers of those systems are obtained, and it is shown that they agree with the experimental ones. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The frame and scale dependence of the pair-term contribution to the electromagnetic form factor of a spin-zero composite system of two-fermions is studied within the Light Front. The form factor is evaluated from the plus-component of the current in the Breit frame, using for the first time a nonconstant, symmetric ansatz for the Bethe-Salpeter amplitude. The frame dependence is analyzed by allowing a nonvanishing plus component of the momentum transfer, while the dynamical scale is set by the masses of the constituents and by mass and size of the composite system. A transverse momentum distribution, associated with the Bethe-Salpeter amplitude, is introduced which allows to define strongly and weakly relativistic systems. In particular, for strongly relativistic systems, the pair term vanishes for the Drell-Yan condition, while is dominant for momentum transfer along the light-front direction. For a weakly relativistic system, fitted to the deuteron scale, the pair term is negligible up to momentum transfers of 1 (GeV/c)(2). A comparison with results obtained within the Front-Form Hamiltonian dynamics with a fixed number of constituents is also presented. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The bound state of constituent quarks forming a Qqq composite baryon is investigated in a QCD-inspired effective light-front model. The light-front Faddeev equations are derived and solved numerically. The masses of the spin 1/2 low-lying states of the nucleon, Lambda(0), Lambda(c)(+) and Lambda(b)(0), are found and compared to the experimental data. The data are qualitatively described with a flavor independent effective interaction.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The synthesis, characterization and catalytic activity of the cationic iron porphyrins Fe[M(4-N-MePy)TDCPP]Cl-2 and Fe[M(4-N-MePy)TFPP]Cl-2 in the epoxidation of (Z)-cyclooctene by PhIO in homogeneous solution and supported on silica gel (SG), imidazole propyl gel (IPG) or SG modified with 2-(4-sulfonatophenyl)ethyl groups (SiSO3) have been accomplished. When supported on IPG, both cationic FeP bind to the support via Fe-imidazole coordination. Fe[M(4-N-MePy)TDCPP]IPG contains a mixture of low-spin bis-coordinated (FeP)-P-III and high-spin mono-coordinated (FeP)-P-III species, whereas Fe[M(4-N-MePy)TFPP]IPG only contains high-spin mono-coordinated (FeP)-P-III. These FePIPG catalysts also contain (FeP)-P-II species, whose presence was confirmed by EPR spectroscopy using NO as a paramagnetic probe. Both cationic FePs coordinate to SG through Fe-O ligation and they are present as high-spin (FeP)-P-III species. The cationic FePs supported on SiSO3- are also high-spin (FeP)-P-III species and they bind to the support via electrostatic interaction between the 4-N-methylpyridyl groups and the SO3- groups present on the matrix. In homogeneous solution, both Fe[M(4-N-MePy)TDCPP]Cl-2 and Fe[M(4-N-MePy)TFPP]Cl-2 have similar catalytic activity to Fe(TDCPP)Cl and Fe(TFPP)Cl, leading to cis-epoxycyclooctane yields of 92%. When supported on inorganic matrices,both FePs lead to epoxide yields comparable to their homogeneous analogues and their anchoring enables catalyst recovery and re-use. Recycling of Fe[M(4-N-MePy)TDCPP]SiSO3- shows that this FeP maintains its activity in a second reaction. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
ESR spectra of spin probes were used to monitor lipid-protein interactions in native and cholesterol-enriched microsomal membranes. In both systems composite spectra were obtained, one characteristic of bulk bilayer organization and another due to a motionally restricted population, which was ascribed to lipids in a protein microenvironment. Computer spectral subtractions revealed that cholesterol modulates the order/mobility of both populations in opposite ways, i.e., while the lipid bilayer region gives rise to more anisotropic spectra upon cholesterol enrichment, the spectra of the motionally restricted population become indicative of increased mobility and/or decreased order. These events were evidenced by measurement of both effective order parameters and correlation times. The percentages of the motionally restricted component were invariant in native and cholesterol-enriched microsomes. Variable temperature studies also indicated a lack of variation of the percentages of both spectral components, suggesting that the motionally restricted one was not due to protein aggregation. The results correlate well with the effect of cholesterol enrichment on membrane-bound enzyme kinetics and on the behavior of fluorescent probes [Castuma & Brenner (1986) Biochemistry 25, 4733-4738]. Several hypothesis are put forward to explain the molecular mechanism of the cholesterol-induced spectral changes.
Resumo:
An EPR approach to monitor peptide chain aggregation inside resin beads is introduced. Model low and highly peptide-loaded resins containing an aggregating sequence were labeled with a paramagnetic amino acid derivative and studied with regard to their solvation behavior in different solvent systems. For the first time in the peptide synthesis, EPR spectroscopic has allowed the detection of differentiated levels of peptide chain aggregation as a function of solvent and resin loading. (C) 1997, Elsevier B.V. Ltd. All rights reserved.
Resumo:
We present the zero-temperature phase diagram of the one-dimensional t(2g)-orbital Hubbard model, obtained using the density-matrix renormalization group and Lanczos techniques. Emphasis is given to the case of the electron density n=5 corresponding to five electrons per site, while several other cases for electron densities between n=3 and 6 are also studied. At n=5, our results indicate a first-order transition between a paramagnetic (PM) insulator phase, with power-law slowly decaying correlations, and a fully polarized ferromagnetic (FM) state by tuning the Hund's coupling. The results also suggest a transition from the n=5 PM insulator phase to a metallic regime by changing the electron density, either via hole or electron doping. The behavior of the spin, charge, and orbital correlation functions in the FM and PM states are also described in the text and discussed. The robustness of these two states against varying parameters suggests that they may be of relevance in quasi-one-dimensional Co-oxide materials, or even in higher dimensional cobaltite systems as well.
Resumo:
The magnetic order resulting from the indirect exchange in the metallic phase of a (Ga,Mn)As/GaAs double layer structure is studied via Monte Carlo simulation. The polarization of the hole gas is taken into account, establishing a self-consistency between the magnetic order and the electronic structure. The Curie-Weiss temperatures calculated for these low-dimensional systems are in the range of 50-80 K, and the dependence of the transition temperature with the GaAs separation layer is established. (C) 2003 Published by Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)