29 resultados para Spaces
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We study Hardy spaces on the boundary of a smooth open subset or R-n and prove that they can be defined either through the intrinsic maximal function or through Poisson integrals, yielding identical spaces. This extends to any smooth open subset of R-n results already known for the unit ball. As an application, a characterization of the weak boundary values of functions that belong to holomorphic Hardy spaces is given, which implies an F. and M. Riesz type theorem. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The play operator has a fundamental importance in the theory of hysteresis. It was studied in various settings as shown by P. Krejci and Ph. Laurencot in 2002. In that work it was considered the Young integral in the frame of Hilbert spaces. Here we study the play in the frame of the regulated functions (that is: the ones having only discontinuities of the first kind) on a general time scale T (that is: with T being a nonempty closed set of real numbers) with values in a Banach space. We will be showing that the dual space in this case will be defined as the space of operators of bounded semivariation if we consider as the bilinearity pairing the Cauchy-Stieltjes integral on time scales.
Resumo:
An approach featuring s-parametrized quasiprobability distribution functions is developed for situations where a circular topology is observed. For such an approach, a suitable set of angle - angular momentum coherent states must be constructed in an appropriate fashion.
Resumo:
Following the discussion-in state-space language-presented in a preceding paper, we work on the passage from the phase-space description of a degree of freedom described by a finite number of states (without classical counterpart) to one described by an infinite (and continuously labelled) number of states. With this it is possible to relate an original Schwinger idea to the Pegg-Barnett approach to the phase problem. In phase-space language, this discussion shows that one can obtain the Weyl-Wigner formalism, for both Cartesian and angular coordinates, as limiting elements of the discrete phase-space formalism.
Resumo:
By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.
Resumo:
We show how discrete squeezed states in an N-2-dimensional phase space can be properly constructed out of the finite-dimensional context. Such discrete extensions are then applied to the framework of quantum tomography and quantum information theory with the aim of establishing an initial study on the interference effects between discrete variables in a finite phase space. Moreover, the interpretation of the squeezing effects is seen to be direct in the present approach, and has some potential applications in different branches of physics.
Resumo:
The Cahill-Glauber approach for quantum mechanics on phase space is extended to the finite-dimensional case through the use of discrete coherent states. All properties and features of the continuous formalism are appropriately generalized. The continuum results are promptly recovered as a limiting case. The Jacobi theta functions are shown to have a prominent role in the context.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Let alpha be a C(infinity) curve in a homogeneous space G/H. For each point x on the curve, we consider the subspace S(k)(alpha) of the Lie algebra G of G consisting of the vectors generating a one parameter subgroup whose orbit through x has contact of order k with alpha. In this paper, we give various important properties of the sequence of subspaces G superset of S(1)(alpha) superset of S(2)(alpha) superset of S(3)(alpha) superset of ... In particular, we give a stabilization property for certain well-behaved curves. We also describe its relationship to the isotropy subgroup with respect to the contact element of order k associated with alpha.
Resumo:
Suppose that u(t) is a solution of the three-dimensional Navier-Stokes equations, either on the whole space or with periodic boundary conditions, that has a singularity at time T. In this paper we show that the norm of u(T - t) in the homogeneous Sobolev space (H)over dot(s) must be bounded below by c(s)t(-(2s-1)/4) for 1/2 < s < 5/2 (s not equal 3/2), where c(s) is an absolute constant depending only on s; and by c(s)parallel to u(0)parallel to((5-2s)/5)(L2)t(-2s/5) for s > 5/2. (The result for 1/2 < s < 3/2 follows from well-known lower bounds on blowup in Lp spaces.) We show in particular that the local existence time in (H)over dot(s)(R-3) depends only on the (H)over dot(s)-norm for 1/2 < s < 5/2, s not equal 3/2. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762841]
Resumo:
We show that the Hardy space H¹ anal (R2+ x R2+) can be identified with the class of functions f such that f and all its double and partial Hubert transforms Hk f belong to L¹ (R2). A basic tool used in the proof is the bisubharmonicity of |F|q, where F is a vector field that satisfies a generalized conjugate system of Cauchy-Riemann type.
Resumo:
Operator bases are discussed in connection with the construction of phase space representatives of operators in finite-dimensional spaces, and their properties are presented. It is also shown how these operator bases allow for the construction of a finite harmonic oscillator-like coherent state. Creation and annihilation operators for the Fock finite-dimensional space are discussed and their expressions in terms of the operator bases are explicitly written. The relevant finite-dimensional probability distributions are obtained and their limiting behavior for an infinite-dimensional space are calculated which agree with the well known results. (C) 1996 Academic Press, Inc.
Resumo:
The von Neumann-Liouville time evolution equation is represented in a discrete quantum phase space. The mapped Liouville operator and the corresponding Wigner function are explicitly written for the problem of a magnetic moment interacting with a magnetic field and the precessing solution is found. The propagator is also discussed and a time interval operator, associated to a unitary operator which shifts the energy levels in the Zeeman spectrum, is introduced. This operator is associated to the particular dynamical process and is not the continuous parameter describing the time evolution. The pair of unitary operators which shifts the time and energy is shown to obey the Weyl-Schwinger algebra. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
This paper deals with two aspects of relativistic cosmologies with closed spatial sections. These spacetimes are based on the theory of general relativity, and admit a foliation into space sections S(t), which are spacelike hypersurfaces satisfying the postulate of the closure of space: each S(t) is a three-dimensional closed Riemannian manifold. The topics discussed are: (i) a comparison, previously obtained, between Thurston geometries and Bianchi-Kantowski-Sachs metrics for such three-manifolds is here clarified and developed; and (ii) the implications of global inhomogeneity for locally homogeneous three-spaces of constant curvature are analyzed from an observational viewpoint.