279 resultados para Sintering

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ba(Zr0.10Ti0.90)O3 (BZT10) and W+ 6 substituted BZT ceramics (BZT10:W) were prepared by mixed oxide method. The effect of W+ 6 addition in the BZT was evaluated by X-ray diffraction (XRD), dilatometer analysis, microstructural and dielectrical properties. When tungsten is introduced in the BZT lattice, a decrease in the grain size and shift on Curie temperature to lower value besides broadening of dielectric permittivity is evident. This is due repulsion between tungsten and their nearest neighbors leading to a structure which is tetragonal distorted. The sintering temperature is reduced when tungsten is introduced in the BZT lattice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-ohmic and dielectric properties as well as the dependence on the microstructural features of CaCu(3)Ti(4)O(12)/CaTiO(3) ceramic composites obtained by conventional and microwave sintering were investigated. It was demonstrated that the non-ohmic and dielectric properties depend strongly on the sintering conditions. It was found that the non-linear coefficient reaches values of 65 for microwave-sintered samples and 42 for samples sintered in a conventional furnace when a current density interval of 1-10 mA cm(-2) is considered. The non-linear coefficient value of 65 is equivalent to 1500 for samples sintered in the microwave if a current interval of 5-30 mA is considered as is shortly discussed by Chung et al (2004 Nature Mater. 3 774). Due to a high non-linear coefficient and a low leakage current (90 mu A) under both processing conditions, these samples are promising for varistor applications. The conventionally sintered samples exhibit a higher relative dielectric constant at 1 kHz (2960) compared with the samples sintered in the microwave furnace (2100). At high frequencies, the dielectric constant is also larger in the samples sintered in the conventional furnace. Depending on the application, one or another synthesis methodology is recommended, that is, for varistor applications sintered in a microwave furnace and for dielectric application sintered in a conventional furnace.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work reports on the preparation of Al2O3-TiO2 ceramics by high-energy ball milling and sintering, varying the molar fraction in 1:1 and 3:1. The powder mixtures were processed in a planetary Fritsch P-5 ball mill using silicon nitride balls (10 mm diameter) and vials (225 mL), rotary speed of 250 rpm and a ball-to-powder weight ratio of 5:1. Samples were collected into the vial after different milling times. The milled powders were uniaxially compacted and sintered at 1300 and 1500 degrees C for 4h. The milled and sintered materials were characterized by X-ray diffraction and electron scanning microscopy (SEM). Results indicated that the intensity of Al2O3 and TiO2 peaks were reduced for longer milling times, suggesting that nanosized particles can be achieved. The densification of Al2O3-TiO2 ceramics was higher than 98% over the relative density in samples sintered at 1500 degrees C for 4h, which presented the formation of Al2TiO5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the sintering method on the microstructural and electrical properties of (Pb(0.89)Nd(0.02)La(0.09))(Zr(0.65)Ti(0.35))O(3) (PNLZT) ceramics was studied by impedance spectroscopy. Structural and microstructural analyses were performed using x-ray and scanning electron microscopy techniques. Two different sintering routes were employed: the conventional and the hot-pressing sintering methods. The impedance analysis provided a convincing evidence for the existence of both grain (g) and grain boundary (gb) contributions to the conduction process. An equivalent circuit for the impedance behaviour has been proposed and discussed. The variation in the sintering method produces significant changes in the grain and grain boundary conductivities. For the grain effect, the main conduction mechanism has been associated with oxygen vacancy migration. Otherwise, for grain boundary conductivity the impedance behaviour has been discussed in terms of the brick-layer and the constriction resistance models (BLM and CRM, respectively).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sintering behavior of SnO2-CuO system has been investigated for two preparation methods and as a function of antimony concentration. A chemical preparation (Pechini's method) resulted in powders with smaller particle sizes than for a conventional oxide mixture. This led to smaller grain sizes in Pechini's method ceramics. The microstructures were heterogeneous in both systems, showing grain coarsening. The densification was aided by liquid phase formation, due to copper, in both systems, but the temperature of maximum shrinkage rate was larger for the Pechini's method ceramic because copper had to diffuse to the grain surface. Independently of the preparation method, antimony did not aid densification, and increasing its concentration led to a higher densification temperature and lower shrinkage rate. (C) 2003 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foram avaliadas, durante o processo de sinterização, as propriedades mecânicas de peças cerâmicas a base de argila com adição de rocha sedimentar. Foram preparados corpos de prova com 0, 20, 40, 60 e 80% em peso de rocha adicionada ao material argiloso. As peças foram sinterizadas nas temperaturas de 500, 800, 900, 1000, 1100 e 1200 °C e, posteriormente, submetidas à análise de difração de raios X e a ensaios tecnológicos Os resultados de difração de raios X mostram que a rocha sedimentar apresenta argilominerais micáceos enquanto o material argiloso possui a caulinita como fase principal. Técnicas de análises térmicas e difração de raios X das diferentes misturas mostram reações que indicam transformação (inversão do quartzo), decomposição (perda de hidróxidos) e formação de fase (mulita) durante o aquecimento das amostras. Os ensaios tecnológicos mostram que a adição da rocha sedimentar melhora algumas propriedades do material sinterizado, auxiliada pela presença de fundentes. Entretanto, a presença de quartzo na rocha dificulta a formação da fase mulita. A formação de novas fases e as transformações ocorridas no aquecimento e resfriamento das amostras ajuda explicar as propriedades tecnológicas dos materiais cerâmicos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead zirconate powder, with Zr/Ti ratio of 50/50 was prepared by polymeric precursor method and doped with 3, 5 and 7 mol% of Sr+2 Or Ba+2, as well as by 0.2 to 5 mol% of Nb+5. The powder was calcined at 750 degrees C by 4 hours and milled during 1.5 h in isopropilic alcohol. Powders were characterized by surface area measurements (BET method), by infrared spectroscopy and by X-ray diffraction to characterize the crystal structure. Isostatically pressed samples were sintered in a dilatometer furnace by using a constant heating rate of 10 degrees C/min from ambient to 1200 degrees C. Synthetic air and air with water vapor were used as atmospheres. Both Sr+2 and Ba+2 substitute Pb+2 and favor the formation of rhombohedral phase. Otherwise, Nb+5 substitute preferentially Zr+4 favoring tetragonal phase. The concentration of dopants and the atmosphere influence the densification and the microstructure of the PZT, which alters the dielectric and piezoelectric properties of the ceramics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline ZrO2-12 mol % CeO2 powders were synthesized using a polymeric precursor method based on the Pechini process. X-ray diffraction (XRD) patterns showed that the method was effective to synthesize tetragonal zirconia single-phase. The mean crystallite size attained ranges from 6 to 15 nm. The BET surface areas were relatively high reaching 97 m(2)/g. Studies by nitrogen adsorption/desorption on powders, dilatometry of the compacts, and transmission electron microscopy (TEM) of the powders, were also developed to verify the particles agglomeration state. Both citric acid : ethylene glycol ratio and calcination temperature affected the powder morphology, which influenced the sinterability and microstructure of the sintered material, as showed by scanning electron microscopy (SEM). (C) 2001 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PLZT ceramics belong to one of the very important groups of functional materials that make a basis for the production of a large range of electronic devices. The microstructure and properties of ceramics depend on the powder preparation and thermal processing conditions. Various techniques have been used to obtain chemically homogeneous and fine starting powders. PLZT powders have been prepared by two different production routes: by a modified Pechini method, using a polymeric precursor method (PMM) and by a partial oxalate method. A two-step sintering process, including a hot pressing, was carried out at 1100 and 1200degreesC Distinct phases obtained during the sintering process have been investigated by SEM and EDS techniques and dielectric properties such as permittivity and dielectric loss were measured in a frequency range from 1 to 20 kHz.. A significant difference in microstructure and dielectric properties, depending on powder origin and sintering procedure, has been noticed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physicochemical electronic characteristics of SnO2 render it useful in many technical applications, including ceramic varistors, stable electrodes used in electric glass-melting furnaces and electrometallurgy of aluminum, transparent windows and chemical sensors. The use of ZnO as a sintering aid was explored in this study to obtain SnO2 as a dense ceramic. Compacts were obtained by mechanical mixing of oxides, isostatic pressing at 210 MPa and sintering in situ inside a dilatometer at heating rates of 10degreesC/min. The grain size and microstructure were investigated by scanning and transmission electron microscopy (SEM/TEM). The phases and chemical composition were analyzed by energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that ZnO acts as a densification aid for SnO2, improving its grain growth with additions of up to 2 mol%. ZnO forms a solid solution with SnO2 UP to 1 mol%, above which SnZnO3 precipitates in the grain boundary, potentially inhibiting shrinkage and grain growth. (C) 2004 Kluwer Academic Publishers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addition of 0.5 mol% of CoO into SnO2 promotes densification of this oxide to 99% of the theoretical density during sintering. TEM in this system reveals that after sintering at 1210 degrees C a secondary phase of Co2SnO4 is precipitated at the SnO2 grain boundaries during cooling. This phase is formed by diffusion of Co ions from the bulk to the grain boundary during sintering leaving needle-like defects at the grain bulk. The high resolution TEM micrograph of this system sintered at 1210 degrees C and 1400 degrees C showed an amorphous grain boundary region low in cobalt, indicating that the Co2SnO4 phase is precipitated from this region. (C) 1999 Elsevier B.V. Limited and Techna S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sintering of ZrO2. MgO . ZnO powder has been investigated by TMA (Thermal Mechanical Analyser) and its phases analysed by XRD (X-ray diffraction pattern). The data obtained from sintering was studied by the Bannister equation and its dominant sintering mechanism was calculated. It was observed that the ZnO addition in the ZrO2. MgO solid solution lead to increased zirconia stabilization, According to the vacancies model, the ZnO addition did not lead to zirconia phases stabilization (PSZ). An analysis of the rate control in the initial stage of the sintering (region I) showed a mechanism of volume diffusion type. In other regions (regions II and III), the grain growth did lead to the Bannister equation deviation, which was observed by SEM (Scanning Electron Microscopy). These results were different from those demonstrated by other authors who studied the ZrO2. Y2O3 solid solution and obtained a mechanism of grain boundary diffusion type. (C) 1999 Published by Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.