47 resultados para Singular optics
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Three sets of non-singular canonical variables for the rotational motion are analyzed. These sets are useful when the angle between z-axis of a coordinate system fixed in artificial satellite ( here defined by the directions of principal moments of inertia of the satellite) and the rotational angular momentum vector is zero or when the angle between Z-inertial axis and rotational angular momentum vector is zero. The goal of this paper is to compare all these sets and to determine the benefits of their uses. With this objective, the dynamical equations of each set were derived, when mean hamiltonian associate with the gravity gradient torque is included. For the torque-free rotational motion, analytical solutions are computed for symmetrical satellite for each set of variables. When the gravity gradient torque is included, an analytical solution is shown for one of the sets and a numerical solution is obtained for one of the other sets. By this analysis we can conclude that: the dynamical equation for the first set is simple but it has neither clear geometrical nor physical meaning; the other sets have geometrical and physical meaning but their dynamical equations are more complex.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The infinite cosmological constant limit of the de Sitter solutions to Einstein's equation is studied. The corresponding spacetime is a singular, four-dimensional cone-space, transitive under proper conformal transformations, which constitutes a new example of maximally-symmetric spacetime. Grounded on its geometric and thermodynamic properties, some speculations are made in connection with the primordial universe. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We generalize the Hamilton-Jacobi formulation for higher-order singular systems and obtain the equations of motion as total differential equations. To do this we first study the constraints structure present in such systems.
Resumo:
In this work we present a formal generalization of the Hamilton-Jacobi formalism, recently developed For singular systems, to include the case of Lagrangians containing variables which are elements of Berezin algebra. We derive the Hamilton-Jacobi equation for such systems, analyzing the singular case in order to obtain the equations of motion as total differential equations and study the integrability conditions for such equations. An example is solved using both Hamilton-Jacobi and Dirac's Hamiltonian formalisms and the results are compared. (C) 1998 Academic Press.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
By means of a well-established algebraic framework, Rogers-Szego functions associated with a circular geometry in the complex plane are introduced in the context of q-special functions, and their properties are discussed in detail. The eigenfunctions related to the coherent and phase states emerge from this formalism as infinite expansions of Rogers-Szego functions, the coefficients being determined through proper eigenvalue equations in each situation. Furthermore, a complementary study on the Robertson-Schrodinger and symmetrical uncertainty relations for the cosine, sine and nondeformed number operators is also conducted, corroborating, in this way, certain features of q-deformed coherent states.
Resumo:
We use a toy model to illustrate how to build effective theories for singular potentials. We consider a central attractive 1/r(2) potential perturbed by a 1/r(4) correction. The power-counting rule, an important ingredient of effective theory, is established by seeking the minimum set of short-range counterterms that renormalize the scattering amplitude. We show that leading-order counterterms are needed in all partial waves where the potential overcomes the centrifugal barrier, and that the additional counterterms at next-to-leading order are the ones expected on the basis of dimensional analysis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper we deal with discontinuous vector fields on R-2 and we prove that the analysis of their local behavior around a typical singularity can be treated via singular perturbation. The regularization process developed by Sotomayor and Teixeira is crucial for the development of this work. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Singular perturbations problems in dimension three which are approximations of discontinuous vector fields are studied in this paper. The main result states that the regularization process developed by Sotomayor and Teixeira produces a singular problem for which the discontinuous set is a center manifold. Moreover, the definition of' sliding vector field coincides with the reduced problem of the corresponding singular problem for a class of vector fields.
Resumo:
Recently, the Hamilton-Jacobi formulation for first-order constrained systems has been developed. In such formalism the equations of motion are written as total differential equations in many variables. We generalize the Hamilton-Jacobi formulation for singular systems with second-order Lagrangians and apply this new formulation to Podolsky electrodynamics, comparing with the results obtained through Dirac's method.
Resumo:
In this paper singularly perturbed reversible vector fields defined in R-n without normal hyperbolicity conditions are discussed. The main results give conditions for the existence of infinitely many periodic orbits and heteroclinic cycles converging to singular orbits with respect to the Hausdorff distance.