29 resultados para Silanization

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. This study characterized the feldspathic ceramic surfaces after various silanization protocols.Methods. Ceramic bars (2 mm x 4 mm x 10 mm) (N = 18) of feldpathic ceramic (VM7, VITA Zahnfabrik) were manufactured and finished. Before silane application, the specimens were ultrasonically cleaned in distilled water for 10 min. The ceramic specimens were randomly divided into nine groups (N = 2 per group) and were treated with different silane protocols. MPS silane (ESPE-Sil, 3M ESPE) was applied to all specimens and left to react at 20 degrees C for 2 min (G20). After drying, the specimens were subjected to heat treatment in an oven at 38 degrees C (G38), 79 degrees C (G79) or 100 degrees C (G100) for 1 min. Half of the specimens of each group were rinsed with water at 80 degrees C for 15 s (G20B, G38B, G79B, G100B). The control group (GC) received no silane. Attenuated total reflection infrared Fourier transform analysis (ATR FT-IR) was performed using a spectrometer. Thickness of silane layer was measured using a spectroscopic ellip-someter working in the lambda = 632.8 nm (He-Ne laser) at 70 degrees incidence angle. Surface roughness was evaluated using an optical profilometer. Specimens were further analyzed under the Scanning Electron Microscopy (SEM) to observe the topographic patterns.Results. ATR FT-IR analysis showed changes in Si-O peaks with enlarged bands around 940 cm(-1). Ellipsometry measurements showed that all post-heat treatment actions reduced the silane film thickness (30.8-33.5 nm) compared to G20 (40 nm). The groups submitted to rinsing in hot water (B groups) showed thinner silane films (9.8-14.4 nm) than those of their corresponding groups (without washing) (30.8-40 nm). Profilometer analysis showed that heat treatments (Ra approximate to 0.10-0.19 mu m; Rq approximate to 0.15-0.26 mu m) provided a smoother surface than the control group (Ra approximate to 0.48 mu m; Rq approximate to 0.65 mu m). Similar patterns were also observed in SEM images.Significance. Heat treatment after MPS silane application improved the silane layer network. Rinsing with boiling water eliminated the outmost unreacted regions of the silane yielding to thinner film thicknesses. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. This study evaluated the durability of bond strength between resin cement and a feldspathic ceramic submitted to different etching regimens with and without silane coupling agent application.Methods. Thirty-two blocks (6.4 mm x 6.4 mm x 4.8 mm) were fabricated using a microparticulate feldspathic ceramic (Vita VM7), ultrasonically cleaned with water for 5 min and randomly divided into four groups, according to the type of etching agent and silanization method: method 1, etching with 10% hydrofluoric (HF) acid gel for I min + silanization; method 2, HF only; method 3, etching with 1.23% acidulated phosphate fluoride (APF) for 5 min + silanization; method 4, APF only. Conditioned blocks were positioned in their individual silicone molds and resin cement (Panavia F) was applied on the treated surfaces. Specimens were stored in distilled water (37 degrees C) for 24 h prior to sectioning. After sectioning the ceramic-cement blocks in x- and Y-axis with a bonded area of approximately 0.6 mm(2), the microsticks of each block were randomly divided into two storage conditions: Dry, immediate testing; TC, thermal cycling (12,000 times) + water storage for 150 d, yielding to eight experimental groups. Microtensile bond strength tests were performed in universal testing machine (cross-head speed: 1 mm/min) and failure types were noted. Data obtained (MPa) were analyzed with three-way ANOVA and Tukey's test (alpha = 0.05).Results. Significant influence of the use of silane (p < 0.0001), storage conditions (p = 0.0013) and surface treatment were observed (p = 0.0014). The highest bond strengths were achieved in both dry and thermocycled conditions when the ceramics were etched with HF acid gel and silanized (17.4 +/- 5.8 and 17.4 +/- 4.8 MPa, respectively). Silanization after HF acid gel and APT treatment increased the results dramatically (14.5 +/- 4.2-17.4 +/- 4.8 MPa) compared to non-silanized groups (2.6 +/- 0.8-8.9 +/- 3.1 MPa) where the failure type was exclusively (100%) adhesive between the cement and the ceramic.Significance. Silanization of the feldspathic ceramic surface after APF or HF acid etching increased the microtensile bond strength results significantly, with the latter providing higher results. Long-term thermocycling and water storage did not decrease the results in silanized groups. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of post-silanization heat treatment of a silane agent and rinsing with hot water of silanized CAD/CAM feldspathic ceramic surfaces on the microtensile bond strength between resin cement and the ceramic, before and after mechanical cycling.Materials and Methods: Blocks measuring 10 x 5.7 x 3.25 mm(3) were produced from feldspathic ceramic cubes (VITA Mark II, VITA Zanhfabrik). Each ceramic block was duplicated in composite resin using a template made of polyvinylsiloxane impression material. Afterwards, ceramic and corresponding resin composite blocks were ultrasonically cleaned and randomly divided according to the 5 strategies used for conditioning the ceramic surface (n = 10): GHF: etching with hydrofluoric acid 10% + rinsing with water at room temperature + silanization at 20 degrees C; G20: silanization; G77: silanization + oven drying at 77 degrees C; G20r: silanization + hot water rinsing; G77r: silanization + oven drying at 77 C + hot water rinsing. The resin and ceramic blocks were cemented using a dual-curing resin cement. Every group was divided in two subgroups: aging condition (mechanical cycling, designated as a) or non-aging (designated as n). All the bonded assemblies were sectioned into microsticks for microtensile bond strength (mu TBS) testing. The failure mode of the tested specimens was assessed and mu TBS data were statistically analyzed in two ways: first 2-way ANOVA (GHF, G20 and G77 in non-aging/aging conditions) and 3-way ANOVA (temperature x rinsing x aging factors, excluding GHF), followed by Tukey's test (p = 0.05).Results: The 2-way ANOVA revealed that the mu TBS was significantly affected by the surface treatment (p < 0.001) but not by aging (p = 0.68), and Tukey's test showed that G77-n/G77-a (18.0 MPa) > GHF-n/GHF-a (12.2 MPa) > G20-n/G20-a (9.1 MPa). The 3-way ANOVA revealed that the mu TBS was significantly affected by the heat treatment and rinsing factors (p < 0.001), but not affected by aging (p = 0.36). The rinsing procedure decreased, while oven drying increased the bond strengths. Group G77, in both non-aging and aging conditions (18.6-17.4 MPa), had the highest bond values. Failure modes were mainly mixed for all groups.Conclusion: Oven drying at 77 degrees C improved the bond strength between the resin cement and feldspathic ceramic, but hot water rinsing reduced the bond strength and should not be recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the durability of bond strength between a resin cement and aluminous ceramic submitted to various surface conditioning methods. Twenty-four blocks (5 X 5 X 4 mm 3) of a glass-in filtrated zirconia-alumina ceramic (inCeram Zirconia Classic) were randomly divided into three surface treatment groups: ST1-Air-abrasion with 110-mu m Al2O3 particles + silanization; ST2-Laboratory tribochemical silica coating method (110-mu m Al2O3, ilO-PM Silica) (Rocatec) + silanization; ST3-Chairside tribochemical silica coating method (30-mu m SiOx) (CoJet) + silanization. Each treated ceramic block was placed in its silicone mold with the treated surface exposed. The resin cement (Panavia F) was prepared and injected into the mold over the treated surface. Specimens were sectioned to achieve nontrimmed bar specimens (14 sp/block) that were randomly divided into two conditions: (a) Dry-microtensile test after sectioning; (b) Thermocycling (TC)-(6,000X, 5-55 degrees C) and water storage (150 days). Thus, six experimental groups were obtained (11 = 50): Gr1-ST1 + dry; Gr2-ST1 + TC. Gr3-ST2 + dry; Gr4-ST2 + TC; Gr5-ST3 + dry; Gr6ST3 + TC. After microtensile testing, the failure types were noted. ST2 (25.1 +/- 11) and ST3 (24.1 +/- 7.4) presented statistically higher bond strength (MPa) than that of STI (17.5 +/- 8) regardless of aging conditions (p < 0.0001). While Gr2 revealed the lowest results (13.3 +/- 6.4), the other groups (21.7 +/- 7.4-25. 9 +/- 9.1) showed statistically no significant differences (two-way ANOVA and Tukey's test, a 0.05). The majority of the failures were mixed (82%) followed by adhesive failures (18%). Gr2 presented significantly higher incidence of ADHESIVE failures (54%) than those of other groups (p = 0.0001). Both laboratory and chairside silica coating plus silanization showed durable bond strength. After aging, airabrasion with 110-mu m Al2O3 + silanization showed the largest decrease indicating that aging is fundamental for bond strength testing for acid-resistant Arconia ceramics in order to estimate their long-term performance in the mouth. (c) 2007 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The objective of this study was to evaluate the effect of thermocycling (TC), self-adhesive resin cements and surface conditioning on the microtensile bond strength (mu TBS) between feldspathic ceramic blocks and resin cements.Materials and Methods: Fifty-six feldspathic ceramic blocks (10 x 7 x 5 mm) (Vita Mark II) were divided into groups according to the factors "resin cement" (3 cements) and "surface conditioning" (no conditioning or conditioning [10% hydrofluoric acid etching for 5 min + silanization]) (n = 8): group 1: conditioning+Variolink II (control group); group 2: no conditioning+Biscem; group 3: no conditioning+RelyX U100; group 4: no conditioning+Maxcem Elite; group 5: conditioning+Biscem; group 6: conditioning+RelyX U100; group 7: conditioning+Maxcem Elite. The ceramic-cement blocks were sectioned to produce non-trimmed bar specimens (adhered cross-sectional area: 1 +/- 0.1 mm(2)), which were divided into two storage conditions: dry, mu TBS immediately after cutting; TC (12,000x, 5 degrees C/55 degrees C). Statistical significance was deterimined using two-way ANOVA (7 strategies and 2 storage conditions) and the post-hoc Tukey test (p<0.05).Results: Resin cement and thermocycling affected the mu TBS significantly (p = 0.001). In the dry condition, group 5 (18 +/- 6.5 MPa) presented the lowest values of mu TBS when compared to the other groups. TC decreased the mean mu TBS values significantly (p<0.05) for all resin cements tested (9.7 +/- 2.3 to 22.1 +/- 6.3 MPa), except for the resin cement RelyX U100 (22.1 +/- 6.3 MPa). In groups 3 and 4, it was not possible to measure mu TBS, since these groups had 100% pre-test failures during sectioning. Moreover, the same occurred in group 2 after TC, where 100% failure was observed during thermocycling (spontaneous failures).Conclusion: Hydrofluoric acid etching and silanization of the feldspathic ceramic surface are essential for bonding self-adhesive resin cement to a feldspathic ceramic, regardless of the resin cement used. Non-etched ceramic is not recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives. This study compared the durability of repair bond strength of a resin composite to a reinforced ceramic after three repair systems.Methods. Alumina-reinforced feldspathic ceramic blocks (Vitadur-alpha(R)) (N=30) were randomly divided into three groups according to the repair method: PR-Porcelain Repair Kit (Bisco) [etching with 9.5% hydrofluoric acid + silanization + adhesive]; CJ-CoJet Repair Kit (3M ESPE) [(chairside silica coating with 30 mu m SiO2 + silanization (ESPE(R)-Sil) + adhesive (Visio(TM)-Bond)]; CL-Clearfil Repair Kit [diamond surface roughening, etching with 40% H3PO4 + Clearfil Porcelain Bond Activator + Clearfil SE Bond)]. Resin composite was photo-polymerized on each conditioned ceramic block. Non-trimmed beam specimens were produced for the microtensile bond strength (mu TBS) tests. In order to study the hydrolytic durability of the repair methods, the beam specimens obtained from each block were randomly assigned to two conditions. Half of the specimens were tested either immediately after beam production (Dry) or after long-term water storage (37 degrees C, 150 days) followed by thermocyling (12,000 cycles, 5-55 degrees C) in a universal testing machine (1 mm/min). Failure types were analyzed under an optical microscope and SEM.Results. mu TBS results were significantly affected by the repair method (p=0.0001) and the aging conditions (p=0.0001) (two-way ANOVA, Tukey's test). In dry testing conditions, PR method showed significantly higher (p < 0.001) repair bond strength (19.8 +/- 3.8 MPa) than those of CJ and CL (12.4 +/- 4.7 and 9.9 +/- 2.9, respectively). After long-term water storage and thermocycling, CJ revealed significantly higher results (14.5 +/- 3.1 MPa) than those of PR (12.1 +/- 2.6 MPa) (p < 0.01) and CL (4.2 +/- 2.1 MPa) (p < 0.001). In all groups when tested in dry conditions, cohesive failure in the composite accompanied with adhesive failure at the interface (mixed failures), was frequently observed (76%, 80%, 65% for PR, CJ and CL, respectively). After aging conditions, while the specimens treated with PR and CJ presented primarily mixed failure types (52% and 87%, respectively), CL group presented mainly complete adhesive failures at the interface (70%).Significance. Hydrolytic stability of the repair method based on silica coating and silanization was superior to the other repair strategies for the ceramic tested. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study tested the bond strength of a resin cement to a glass-infiltrated zirconia-alumina ceramic after three conditioning methods and using two test methods (shear-SBS versus microtensile-MTBS). Ceramic blocks for MTBS and ceramic disks for SBS were fabricated. Three surface conditioning (SC) methods were evaluated: (1) 110-mu m Al(2)O(3)+Silanization; (2) Chairside silica coating+silanization: (3) Laboratory silica coating+silanization. Following surface conditioning, the resin cement (Panavia F) was bonded to the conditioned ceramics. Although no statistically significant differences (p=0.1076) were seen between the test methods, results yielded with the different surface conditioning methods showed statistically significant differences (p<0.0001) (SC2=SC3>SC1.). As for the interaction between the factors, two-way ANOVA showed that it was not statistically significant (p=0.1443). MTBS test resulted in predominantly mixed failure (85%), but SBS test resulted in exclusively adhesive failure. on the effects of different surface conditioning methods, chairside and laboratory tribochemical silica coating followed by silanization showed higher bond strength results compared to those of aluminum oxide abrasion and silanization, independent of the test method employed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statement of problem. It is not clear how different glass ceramic surface pretreatments influence the bonding capacity of various luting agents to these surfaces.Purpose. The purpose of this study was to evaluate the microtensile bond strength (mu TBS) of 3 resin cements to a lithia disilicate-based ceramic submitted to 2 surface conditioning treatments.Material and methods. Eighteen 5 X 6 X 8-mm ceramic (IPS Empress 2) blocks were fabricated according to manufacturer's instructions and duplicated in composite resin (Tetric Ceram). Ceramic blocks were polished and divided into 2 groups (n=9/treatment): no conditioning (no-conditioning/control), or 5% hydrofluoric acid etching for 20 seconds and silanization for 1 minute (HF + SIL). Ceramic blocks were cemented to the composite resin blocks with I self-adhesive universal resin cement (RelyX Unicem) or 1 of 2 resin-based luting agents (Multilink or Panavia F), according to the manufacturer's instructions. The composite resin-ceramic blocks were stored in humidity at 37 degrees C for 7 days and serially sectioned to produce 25 beam specimens per group with a 1.0-mm(2) cross-sectional area. Specimens were thermal cycled (5000 cycles, 5 degrees C-55 degrees C) and tested in tension at 1 mm/min. Microtensile bond strength data (MPa) were analyzed by 2-way analysis of variance and Tukey multiple comparisons tests (alpha=.05). Fractured specimens were examined with a stereomicroscope (X40) and classified as adhesive, mixed, or cohesive.Results. The surface conditioning factor was significant (HF+SIL > no-conditioning) (P<.0001). Considering the unconditioned groups, the mu TBS of RelyX Unicem was significantly higher (9.6 +/- 1.9) than that of Multilink (6.2 +/- 1.2) and Panavia F (7.4 +/- 1.9). Previous etching and silanization yielded statistically higher mu TBS values for RelyX Unicem (18.8 +/- 3.5) and Multilink (17.4 +/- 3.0) when compared to Panavia F (15.7 +/- 3.8). Spontaneous debonding after thermal cycling was detected when luting agents were applied to untreated ceramic surfaces.Conclusion. Etching and silanization treatments appear to be crucial for resin bonding to a lithia disilicate-based ceramic, regardless of the resin cement used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives. This study evaluated the effect of two different surface conditioning methods on the repair bond strength of a bis-GMA-adduct/bis-EMA/TEGDMA based resin composite after three aging conditions.Methods. Thirty-six composite resin blocks (Esthet X, Dentsply) were prepared (5 mm x 6 mm x 6 mm) and randomly assigned into three groups for aging process: (a) immersion in citric acid (pH 3.0 at 37 degrees C, 1 week) (CA); (b) boiling in water for 8h (BW) and (c) thermocycling (x5000, 5-55 degrees C, dwell time: 30s) (TC). After aging, the blocks were assigned to one of the following surface conditioning methods: (1) silica coating (30 mu m SiOx) (CoJet, 3M ESPE) + silane (ESPE-Sil) (CJ), (2) phosphoric acid + adhesive resin (Single Bond, 3M ESPE) (PA). Resin composite (Esthet.X (R)) was bonded to the conditioned substrates incrementally and light polymerized. The experimental groups formed were as follows: Gr1:CA + PA; Gr2:CA + CJ Gr3:BW + PA; Gr4: BW + CJ; Gr5:TC + PA; Gr6: TC + CJ. The specimens were sectioned in two axes (x and y) with a diamond disc under coolant irrigation in order to obtain non-trimmed bar specimens (sticks, 10 mm x 1 mm x 1 mm) with 1 mm(2) of bonding area. The microtensile test was accomplished in a universal testing machine (crosshead speed: 0.5 mm min(-1)).Results. The means and standard deviations of bond strength (MPa +/- S.D.) per group were as follows: Gr1: 25.5 +/- 10.3; Gr2: 46.3 +/- 10.1; Gr3: 21.7 +/- 7.1; Gr4: 52.3 +/- 15.1; GrS: 16.1 +/- 5.1; Gr6, 49.6 +/- 13.5. The silica coated groups showed significantly higher mean bond values after all three aging conditions (p < 0.0001) (two-way ANOVA and Tukey tests, alpha = 0.05). The interaction effect revealed significant influence of TC aging on both silica coated and acid etched groups compared to the other aging methods (p < 0.032). Citric acid was the least aggressive aging medium.Significance. Chairside silica coating and silanization provided higher resin-resin bond strength values compared to acid etching with phosphoric acid followed by adhesive resin applications. Thermocycling the composite substrates resulted in the lowest repair bond strength compared to citric acid challenge or boiling in water. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To assess the effect of the composite surface conditioning on the microtensile bond strength of a resin cement to a composite used for inlay/onlay restorations.Materials and Methods: Forty-two blocks (6 x 6 x 4 mm) of a microfilled composite (Vita VMLC) were produced and divided into 3 groups (N = 14) by composite surface conditioning methods: Gr1 - etching with 37% phosphoric acid, washing, drying, silanization; Gr2 - air abrasion with 50-Im Al203 particles, silanization; Gr3 - chairside tribochemiCal silica coating (CoJet System), silanization. Single-Bond (one-step adhesive) was applied on the conditioned surfaces and the two resin blocks treated with the same method were cemented using RelyX ARC (dual-curing resin cement). The specimens were stored for 7 days in water at 37 degrees C and then sectioned to produce nontrimmed beam samples, which were submitted to microtensile bond strength testing (mu TBS). For statistical analysis (one-way ANOVA and Tukey's test, = 0.05), the means of the beam samples from each luted specimen were calculated (n = 7).Results: mu TBS values (MPa) of Gr2 (62.0 +/- 3.9a) and Gr3 (60.5 +/- 7.9a) were statistically similar to each other and higher than Gr1 (38.2 +/- 8.9b). The analysis of the fractured surfaces revealed that all failures occurred at the adhesive zone.Conclusion: Conditioning methods with 50-Im Al203 or tribochemical silica coating allowed bonding between resin and composite that was statistically similar and stronger than conditioning with acid etching.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This study evaluated the adhesive quality of simplified self-adhesive and conventional resin cements to Y-TZP in dry and aged conditions. Methods: Y-TZP ceramic blocks (N=192) (5 x 5 x 2 mm) were embedded in acrylic resin and randomly divided into two groups, based on surface conditioning: 96% isopropanol or chairside tribochemical silica coating and silanization. Conditioned ceramics were divided into four groups to receive the resin cements (Panavia F 2.0, Variolink II, RelyX U100 and Maxcem). After 24 hours, half of the specimens (n=12) from each group were submitted to shear bond strength testing (0.5 nun/minute). The remaining specimens were tested after 90 days of water storage at 37 degrees C and thermocycling (12,000x, 5 degrees C-55 degrees C). Failure types were then assessed. The data were analyzed using three-way ANOVA and the Tukey's test (alpha=0.05). Results: Significant effects of ceramic conditioning, cement type and storage conditions were observed (p<0.0001). The groups cleaned using alcohol only showed low bond strength values in dry conditions and the bond strength was reduced dramatically after aging. Groups conditioned using silica coating and silanization showed higher bond strengths both in dry and aged conditions. A high number of specimens failed prematurely prior to testing when they were cleaned using 96% isopropanol. Conclusion: Overall, silica coating and silanization showed higher, stable bond strengths with and without aging. The durability of resin-ceramic adhesion varied, depending on the adhesive cement type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Thirty blocks (5×5×4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VITA) were fabricated according to the manufacturer's instructions and duplicated in resin composite. The specimens were polished and assigned to one of the following three treatment conditions (n=10): (1) Airborne particle abrasion with 110 μm Al2O3 particles + silanization, (2) Silica coating with 110 μm SiOx particles (Rocatec Pre and Plus, 3M ESPE) + silanization, (3) Silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. The ceramic-composite blocks were cemented with the resin cement (Panavia F) and stored at 37 °C in distilled water for 7 days prior to bond tests. The blocks were cut under coolant water to produce bar specimens with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (cross-head speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using ANOVA and Tukey's test (α≤0.05). Silica coating with silanization either using 110 μm SiOx or 30 μm SiOx particles increased the bond strength of the resin cement (24.6±2.7 MPa and 26.7±2.4 MPa, respectively) to the zirconia-based ceramic significantly compared to that of airborne particle abrasion with 110-μm Al2O3 (20.5±3.8 MPa) (ANOVA, P<0.05). Conditioning the INC-ZR ceramic surfaces with silica coating and silanization using either chairside or laboratory devices provided higher bond strengths of the resin cement than with airborne particle abrasion using 110 μm Al2O3. © 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (In-Ceram Zirconia) ceramics. Materials and Methods: Ten blocks (5 ×6 × 8 mm) of In-Ceram Alumina (AL), In-Ceram Zirconia (ZR), and Procera (PR) ceramics were fabricated according to each manufacturer's instructions and duplicated in composite. The specimens were assigned to one of the two following treatment conditions: (1) airborne particle abrasion with 110-μm Al2O3 particles + silanization, (2) silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. Each ceramic block was duplicated in composite resin (W3D-Master, Wilcos, Petrópolis, RJ, Brazil) using a mold made out of silicon impression material. Composite resin layers were incrementally condensed into the mold to fill up the mold and each layer was light polymerized for 40 s. The composite blocks were bonded to the surface-conditioned ceramic blocks using a resin cement system (Panavia F, Kuraray, Okayama, Japan). One composite resin block was fabricated for each ceramic block. The ceramic-composite was stored at 37°C in distilled water for 7 days prior to bond tests. The blocks were cut under water cooling to produce bar specimens (n = 30) with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (crosshead speed: 1 mm/min). Bond strength values were statistically analyzed using two-way ANOVA and Tukey's test (≤ 0.05). Results: Silica coating with silanization increased the bond strength significantly for all three high-strength ceramics (18.5 to 31.2 MPa) compared to that of airborne particle abrasion with 110-μm Al2O3 (12.7-17.3 MPa) (ANOVA, p < 0.05). PR exhibited the lowest bond strengths after both Al2O3 and silica coating (12.7 and 18.5 MPa, respectively). Conclusion: Conditioning the high-strength ceramic surfaces with silica coating and silanization provided higher bond strengths of the resin cement than with airborne particle abrasion with 110-μm Al2O3 and silanization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This study evaluated the effect of surface conditioning methods and thermocycling on the bond strength between a resin composite and an indirect composite system in order to test the repair bond strength. Materials and Methods: Eighteen blocks (5 x 5 x 4 mm) of indirect resin composite (Sinfony) were fabricated according to the manufacturer's instructions. The specimens were randomly assigned to one of the following two treatment conditions (9 blocks per treatment): (1) 10% hydrofluoric acid (HF) for 90 s (Dentsply) + silanization, (2) silica coating with 30-Ìm SiOx particles (CoJet) + silanization. After surface conditioning, the bonding agent was applied (Adper Single Bond) and light polymerized. The composite resin (W3D Master) was condensed and polymerized incrementally to form a block. Following storage in distilled water at 37°C for 24 h, the indirect composite/resin blocks were sectioned in two axes (x and y) with a diamond disk under coolant irrigation to obtain nontrimmed specimens (sticks) with approximately 0.6 mm2 of bonding area. Twelve specimens were obtained per block (N = 216, n = 108 sticks). The specimens from each repaired block were again randomly divided into 2 groups and tested either after storage in water for 24 h or thermocycling (6000 cycles, 5°C to 55°C). The microtensile bond strength test was performed in a universal testing machine (crosshead speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using two-way ANOVA (α = 0.05). Results: Both surface conditioning (p = 0.0001) and storage conditions (p = 0.0001) had a significant effect on the results. After 24 h water storage, silica coating and silanization (method 2) showed significantly higher bond strength results (46.4 ± 13.8 MPa) than that of hydrofluoric acid etching and silanization (method 1) (35.8 ± 9.7 MPa) (p < 0.001). After thermocycling, no significant difference was found between the mean bond strengths obtained with method 1 (34.1 ± 8.9 MPa) and method 2 (31.9 ± 7.9 MPa) (p > 0.05). Conclusion: Although after 24 h of testing, silica coating and silanization performed significantly better in resin-resin repair bond strength, both HF acid gel and silica coating followed by silanization revealed comparable bond strength results after thermocycling for 6000 times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To assess the effect of the composite surface conditioning on the microtensile bond strength of a resin cement to a composite used for inlay/onlay restorations. Materials and Methods: Forty-two blocks (6 × 6 × 4 mm) of a microfilled composite (Vita VMLC) were produced and divided into 3 groups (N = 14) by composite surface conditioning methods: Gr1 - etching with 37% phosphoric acid, washing, drying, silanization; Gr2 - air abrasion with 50-l̀m Al2O3 particles, silanization; Gr3 - chairside tribochemical silica coating (CoJet System), silanization. Single-Bond (one-step adhesive) was applied on the conditioned surfaces and the two resin blocks treated with the same method were cemented using RelyX ARC (dual-curing resin cement). The specimens were stored for 7 days in water at 37°C and then sectioned to produce nontrimmed beam samples, which were submitted to microtensile bond strength testing (μTBS). For statistical analysis (one-way ANOVA and Tukey's test, · = 0.05), the means of the beam samples from each luted specimen were calculated (n = 7). Results: μTBS values (MPa) of Gr2 (62.0 ± 3.9a) and Gr3 (60.5 ± 7.9a) were statistically similar to each other and higher than Gr1 (38.2 ± 8.9b). The analysis of the fractured surfaces revealed that all failures occurred at the adhesive zone. Conclusion: Conditioning methods with 50-l̀m Al2O3 or tribochemical silica coating allowed bonding between resin and composite that was statistically similar and stronger than conditioning with acid etching.