40 resultados para Scoliosis research society outcomes instrument
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This study of qualitative nature, aimed to investigate the relations arising from experiences in the context of leisure in recreational activities offered in religious camps, with the spread of Protestant moral values .. The study was conducted with the union of literature and exploratory research. First, we sought to understand, through the specific literature, the Protestant society manifestation with its ethics and values, showing how leisure has been sought and appropriated by Protestants institutions. Subsequently, we developed an exploratory research, using as instrument for data collection a mixed questionnaire, applied to a purposeful sample comprised of participants of a religious camp of Protestant institution. Data were analyzed descriptively by Technical Analysis of Thematic Content and indicate that the activities offered at religious camp can diffuse Protestant values directly intentioned, in order to carry religious values so intrinsic to the task, and, indirectly meaning as a tool of evangelism, which are supporting the process of transmission of these values
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this work is to obtain spherical particles YIG from micrometric to nanometric scales. The spherical particles were obtained from cation hydrolysis in acid medium by adding urea or ammonia in order to carry out a homogeneous nucleation process up to 90 degrees C. Different composition and morphology were achieved by changing reactant concentrations, precipitation agent and stabilizing agent. X-ray diffractometry, electrophoretic mobility, transmission and scanning electron microscopies were carried out on these particles to investigate the phase identification, mobility, morphology and particle size. Crystalline YIG, with spherical characteristics, was obtained. The surface potential presented different characteristics for different dispersion media.
Resumo:
LiNbO3 thin films were grown on (0001) sapphire substrates by a chemical route, using the polymeric precursor method. The overall process consists of preparing a coating solution from the Pechini process, based on metallic citrate polymerization, the precursor films, deposited by dip coating, are then heat treated to eliminate the organic material and to synthesize the phase. In this work, we studied the influence of the heat treatment on the structural and optical properties of single-layered films. Two routes were also investigated to increase the film thickness: increasing the viscosity of the coating solution and/or increasing the number of successively deposited layers. The x-ray diffraction theta -2 theta scans revealed the c-axis orientation of the single- and multilayered films and showed that efficient crystallization can be obtained at temperatures as low as 400 degreesC, the phi-scan diffraction evidenced the epitaxial growth with two in-plane variants, A microstructural study revealed that the films were crack free, homogeneous, and relatively dense. Finally, the investigation of the optical properties (optical transmittance and refractive index) confirmed the good quality of the films. These results indicate that the polymeric precursor method is a promising process to develop lithium niobate waveguides.
Resumo:
BaxSr1-xTiO3 (x = 0.6) (BST) thin films were successfully prepared on a Pt(111)/TiO2/SiO2/Si(100) substrate by spin coating, using the polymeric precursor method. BST films with a perovskite single phase were obtained after heat treatment at 700 degrees C. The multilayer BST thin films had a granular structure will a grain size of approximately 60 nm. A 480-nm-thick film was obtained by carrying out five cycles of the spin-coating/heating process. Scanning electron microscopy and atomic force microscopy analyses showed that the thin films had a smooth, dense, crack-free surface with low surface roughness (3.6 nm). At room temperature and at a frequency of 100 kHz, the dielectric constant and the dissipation factor were, respectively, 748 and 0.042. The high dielectric constant value was due to the high microstructural quality and chemical homogeneity of the thin films obtained by the polymeric precursor method.
CRYSTALLIZATION PROCESS AND CHEMICAL DISORDER IN FLASH EVAPORATED AMORPHOUS GALLIUM ANTIMONIDE FILMS
Resumo:
Room temperature data of impedance and phase angle in pellets of electrochemically synthesized ClO4- doped poly(3-methylthiophene) (P3MT) were analyzed assuming the sample being represented by a parallel resistor-capacitor (RC) circuit or by a series RC circuit. The last assumption proved to be the correct one, and to confirm it we use the sample as the RC component of a resistor-capacitor-inductor series resonator. We discuss the possibility of this RC series behavior to be due to a charge-density wave characteristic also evidenced from the huge values of the low-frequency dielectric constant of the system.
Resumo:
Superconductor films of the BSCCO system have been grown by dip coating technique with good success. The chemical method allows us to grow high temperature superconductor thin films to get better control of stoichiometry, large areas and is cheaper than other methods. There is a great technological interest in growth oriented superconductor films due anisotropic characteristics of superconductor materials of high critical temperature, specifically the cuprates, as we know that the orientation may increase the electrical transport properties. Based on this, the polymeric precursor method has been used to obtain thin films of the BSCCO system. In this work we have applied that method together with the deposition technique known as dip coating to obtain Bi-based superconductor thin films, specifically, Bi1.6Pb0.4Sr2.0C2.0Cu3.0Ox+8, also known as 2223 phase with a critical temperature around 110 K. The films with multilayers have been grown on crystalline substrates of LaAlO3 and orientated (100) after being heat treated around 790 degrees C - 820 degrees C in lapse time of 1 hour in a controlled atmosphere. XRD measurements have shown the presence of a crystalline phase 2212 with a critical temperature around 85 K with (001) orientation, as well as a small fraction of 2223 phase. SEM has shown a low uniformity and some cracks that maybe related to the applied heat treatment. WDS has also been used to study the films composition. Different heat treatments have been used with the aim to increase the percentage of 2223 phase. Measurements of resistivity confirmed the presence of at least two crystalline phases, 2212 and 2223, with T-c around 85 K and 110 K, respectively.
Resumo:
Various properties of particles can be altered by coating them with a layer of different chemical composition. Yttrium iron garnet (YIG) particles has been coated with silica for control of their sintering, corrosion resistance, and stabilization of magnetic properties. This silica cover was obtained by hydrolysis of tetraethylorthosilicate (TEOS) in 2-propanol. This material was characterized by transmission (TEM) electron microscopy, (XEDS) X-ray energy-dispersive spectrometry, (XPS) X-ray photoemission spectroscopy and (VSM) vibrating sample magnetometry. YIG was heterocoagulated by silica as indicated by TEM micrographies. XPS measurements indicated that only binding energy for silicon and oxygen was found on the silica shell, which confirms that the YIG was covered. The values of the saturation magnetization differ from the heterocoagulated system to well-crystallized YIG.
Resumo:
Fatigue is an important problem to be considered if a ferroelectric film is used for non-volatile memory devices. In this phenomena, the remanent polarization and coercive field properties degrades in cycles which increase in hysteresis loops. The reasons have been attributed to different mechanisms such as a large voltage applied on ferroelectric film in every reading process in Ferroelectric Random Access Memory (FeRAM) or memories for digital storage in computer, grain size effects and others. The aim of this work is to investigate the influence of the crystallization kinetics on dielectric and ferroelectric properties of the Pb(Zr0.53Ti0.47)O-3 thin films prepared by an alternative chemical method. Films were crystallized in air on Pt/Ti/SiO2/Si substrates at 700 degrees C for 1 hour, in conventional thermal annealing (CTA), and at 700 degrees C for 1 min and 700 degrees C 5 min, using a rapid thermal annealing (RTA) process. Final films were crack free and presented an average of 750 nm in thickness. Dielectric properties were studied in the frequency range of 100 Hz - 1 MHz. All films showed a dielectric dispersion at low frequency. Ferroelectric properties were measured from hysteresis loops at 10 kHz. The obtained remanent polarization (P-r) and coercive field (E-c) were 3.7 mu C/cm(2) and 71.9 kV/cm respectively for film crystallized by CTA while in films crystallized by RTA these parameters were essentially the same. In the fatigue process, the P, value decreased to 14% from the initial value after 1.3 x 10(9) switching cycles, for film by CTA, while for film crystallized by RTA for 5 min, P, decreased to 47% from initial value after 1.7 x 10(9) switching cycles.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thin polymer films were deposited from acetylene and argon mixtures by plasma immersion ion implantation and deposition. The effect of the pulse frequency, v, on molecular structure, optical gap, contact angle and hardness of the films was investigated. It was observed progressive dehydrogenation of the samples and increment in the concentration of unsaturated carbon bonds as the pulse frequency was increased. Film hardness and contact angle increased and optical gap decreased with v. These results are interpreted in terms of the chain unsaturation and crosslinking.
Resumo:
The magnetic and structural properties of sol-gel derived organic/inorganic nanocomposites doped with Fe(II), Fe(III), Nd(III) and Eu (III) ions are discussed. These hybrids consist of poly(oxyethylene)-based chains grafted onto siloxane nanodomains by urea cross-linkages. Small angle X-ray scattering data show the presence of spatial correlations of siloxane domains embedded in the polymer matrix. The magnetic properties of rare-earth doped samples are determined by single ion crystal-field-splitted levels (Eu3+ J=0; Nd3+ J=9/2) and the small thermal irreversibility is mainly associated to structural effects. Fe2+ -doped samples behave as simple paramagnet with residual antiferromagnetic interactions. Fe3+-doped hybrids are much more complex, with magnetic hysterisis, exchange anisotropy and thermal irreversibility at low temperatures. Néel temperatures increase up to 14K for the highest (∼5.5%) Fe3+ mass concentration.