69 resultados para Sardine Lipases
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Lipases have important applications in biotechnological processes, motivating us to produce, purify, immobilize and perform a biochemical characterization of the lipase from Rhizomucor pusillus. The fungus was cultivated by solid state fermentation producing lipolytic activity of about 0.5 U/mL(4U/g). A partial purification by gel filtration chromatography in Se-phacryl S-100 allowed obtaining a yield of about 85% and a purification factor of 5.7. Our results revealed that the purified enzyme is very stable with some significant differences in its properties when compared to crude extract. The crude enzyme extract has an optimum pH and temperature of 7.5 ° C and 40 ° C, respectively. After purification, a shift of the optimum pH from 7 to 8 was observed, as well as a rise in optimumtemperature to 60 ° C and an increase in stability. The enzyme was immobilized on CNBr-Agarose and Octyl-Agarose supports, having the highest immobilization yield of 94% in the second resin. The major advantage of immobilization in hydrophobic media such as Octyl is in its hyper activation, which in this case was over 200%, a very interesting finding. Another advantage of this type of immobilization is the possibility of using the derivatives in biotechnological applications, such as in oil enriched with omega-3 as the results obtained in this study display the hydrolysis of 40% EPA and 7% DHA from sardine oil, promising results compared to the literature.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper provides an overview regarding the main aspects of seed lipases, such as the reactions catalyzed, physiological functions, specificities, sources and applications. Lipases are ubiquitous in nature and are produced by several plants, animals and microorganisms. These enzymes exhibit several very interesting features, such as low cost and easy purification, which make their commercial exploitation as industrial enzymes a potentially attractive alternative. The applications of lipases in food, detergents, oils and fats, medicines and fine chemistry, effluent treatment, biodiesel production and in the cellulose pulp industry, as well as the main sources of oilseed and cereal seed lipases, are reviewed.
Resumo:
Lipases are versatile enzymes regarding the range of reactions they catalyse and substrates on which they act. They are as well important as catalyst in organic synthesis. Their immobilization on appropriate supports confer them greater stability besides the possibility of operating in continuous reactors. In order to explore these abilities, the reactions involving hydrolysis of p-nitrophenyl acetate (PNPA) and transesterification of PNPA with n-butanol were chosen. Lipases from two different sources were assayed, namely: microbial (Candida rugosa, CRL, Sigma Type VII) and pancreatic (PPL, Sigma, Type 11). Two immobilization methods were also used, namely: 1) adsorption, using as support the following silica derivatives (150-300μm e 450μ): phenyl, epoxy, amino and without derivation, and 2) covalent binding, using glutaraldehyde as binding agent and silica amino as support. This later method led to better results. Hydrolytic activity was 6.1 U/gsupport for CRL and 0.97U/gsupport for PPL, and of transesterification, 2,8U/gsupport for CRL and 1,9U/gsupport for PPL. Stability of the immobilized enzyme as a function of temperature was evaluated for CRL at 40°C and 50°C and for PPL at 32°C and 40°C. The assays were initially carried out batchwise, both for soluble and immobilized enzymes, aiming to the obtention of parameters for the continues reactor. Lipases immobilized by covalent binding were used in the assays of operacional stability in continuos reactors. For PPL in aqueous medium, at 32°C, and CRL in organic medium at 40°C, both operating continuously, no significant loss of activity was detected along the analysis period of 17 days. In the case of CRL in aqueous medium at 40°C there was a loss of activity around 40% after 18 days. For PPL in organic medium at 40°C the loss was 33% after 20 days. Compairing both sources with each other, very different results were obtained. Higher activitiy was found for CRL, both for hydrolysis and for transesterification reactions, with higher stability in organic medium. PPL showed lower activity as well as higher stability in aqueous medium. The immobilization method by covalent binding showed to be the most appropriate. Immobilized lipases are therefore relatively stable both in aqueous and organic medium.
Resumo:
Objectives: The purpose of this study was to investigate what effect the ingestion of sardines, rich in omega-3 series polyunsaturated fatty acids, has on the composition of breastmilk. Methods: This was a prospective study of 31 nursing mothers under observation at the Hospital Guilherme Álvaro. Each was given 2 kg of fresh sardines twice with a 15-day interval. Milk was sampled and a 24-hour dietary recall questionnaire was applied on days 0, 15 and 30. Milk was assayed for fatty acid content by gas chromatography. Statistical analysis of the results was performed using nonparametric tests with significance set at p < 0.05. Results: The results demonstrate that the nutritional intake of the nursing mothers was adequate at all three sample points. With regard to the omega-3 series fatty acid content of the breastmilk, it was observed that regular consumption and shorter intervals between ingestion and milk collection resulted in higher concentrations of docosapentaenoic acid and docosahexaenoic acid at 15 and 30 days into the study. Fatty acids from the omega-3 and omega-6 series exhibited a significant correlation, r 2 was 0.58 and 0.59 at 15 and 30 days, respectively. Conclusion: These results suggest that incorporating fish into the diets of nursing mother during lactation, in the form of 100 g of sardines two or three times a week, contributes to an increase in omega-3 series fatty acids. Copyright © 2006 by Sociedade Brasileira de Pediatria.
Resumo:
Polyvinyl alcohol (PVA) microspheres with different degree of crystallinity were used as solid supports for Rhizomucor miehei lipase immobilization, and the enzyme-PVA complexes were used as biocatalysts for the transesterification of soybean oil to fatty acid ethyl esters (FAEE). The amounts of immobilized enzyme on the polymeric supports were similar for both the amorphous microspheres (PVA4) and the high crystalline microspheres (PVA25). However, the enzymatic activity of the immobilized enzymes was depended on the crystallinity degree of the PVA microspheres: enzymes immobilized on the PVA4 microspheres have shown low enzymatic activity (6.13 U mg-1), in comparison with enzymes immobilized on the high crystalline PVA25 microspheres (149.15 U mg-1). A synergistic effect was observed for the enzyme-PVA25 complex during the transesterification reaction of soybean oil to FAEE: transesterification reactions with free enzyme with the equivalent amount of enzyme that were immobilized onto the PVA25 microspheres (5.4 U) have yielded only 20% of FAEE, reactions with the pure highly crystalline microsphere PVA25 have not yielded FAEE, however reactions with the enzyme-PVA25 complexes have yielded 66.3% of FAEE. This synergistic effect of an immobilized enzyme on a polymeric support has not been observed before for transesterification reaction of triacylglycerides into FAEE. Based on ATR-FTIR, 23Na- and 13C-NMR-MAS spectroscopic data and the interaction of the polymeric network intermolecular hydrogen bonds with the lipases residual amino acids a possible explanation for this synergistic effect is provided. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Pós-graduação em Ciências Biológicas (Botânica) - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)