49 resultados para Robot walking
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The development of robots has shown itself as a very complex interdisciplinary research field. The predominant procedure for these developments in the last decades is based on the assumption that each robot is a fully personalized project, with the direct embedding of hardware and software technologies in robot parts with no level of abstraction. Although this methodology has brought countless benefits to the robotics research, on the other hand, it has imposed major drawbacks: (i) the difficulty to reuse hardware and software parts in new robots or new versions; (ii) the difficulty to compare performance of different robots parts; and (iii) the difficulty to adapt development needs-in hardware and software levels-to local groups expertise. Large advances might be reached, for example, if physical parts of a robot could be reused in a different robot constructed with other technologies by other researcher or group. This paper proposes a framework for robots, TORP (The Open Robot Project), that aims to put forward a standardization in all dimensions (electrical, mechanical and computational) of a robot shared development model. This architecture is based on the dissociation between the robot and its parts, and between the robot parts and their technologies. In this paper, the first specification for a TORP family and the first humanoid robot constructed following the TORP specification set are presented, as well as the advances proposed for their improvement.
Resumo:
The reproducibility of the 6-min walking test (6MWT) needs to be more solidly studied. This study aimed to investigate the reproducibility of two 6MWTs performed on subsequent days in a large and representative sample of patients with chronic obstructive pulmonary disease (COPD), and to quantify the learning effect between the two tests, as well as its determinants.In a retrospective observational study, 1,514 patients with COPD performed two 6MWTs on subsequent days. Other measurements included body composition (dual X-ray absorptiometry), dyspnoea (Medical Research Council scale) and comorbidity (Charlson index).Although the 6MWT was reproducible (intraclass correlation coefficient=0.93), patients walked farther in the second test (391 m, 95% CI 155-585 m versus 418 m, 95% CI 185-605 m; p < 0.0001). on average, the second 6MWT increased by 27 m (or 7%), and 82% of patients improved in the second test. Determinants of improvement >= 42 m in the second test (upper limit of the clinically important change) were as follows: first 6MWT < 350 m, Charlson index < 2 and body mass index < 30 kg.m(-2) (OR 2.49, 0.76 and 0.60, respectively).The 6MWT was statistically reproducible in a representative sample of patients with COPD. However, the vast majority of patients improved significantly in the second test by an average learning effect of 27 m.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper investigates the feasibility of using an energy harvesting device tuned such that its natural frequency coincides with higher harmonics of the input to capture energy from walking or running human motion more efficiently. The paper starts by reviewing the concept of a linear resonant generator for a tonal frequency input and then derives an expression for the power harvested for an input with several harmonics. The amount of power harvested is estimated numerically using measured data from human subjects. Assuming that the input is periodic, the signal is reconstructed using a Fourier series before being used in the simulation. It is found that although the power output depends on the input frequency, the choice of tuning the natural frequency of the device to coincide with a particular higher harmonic is restricted by the amount of damping that is needed to maximize the amount of power harvested, as well as to comply with the size limit of the device. It is also found that it is not feasible to tune the device to match the first few harmonics when the size of the device is small, because a large amount of damping is required to limit the motion of the mass.
Resumo:
Objective: To determine chronological and corrected ages at acquisition of motor abilities up to independent walking in very low birth weight preterms and to determine up to what point it is necessary to use corrected age.Methods: This was a longitudinal study of preterms with birth weight < 1,500 g and gestational age <= 34 weeks, free from neurosensory sequelae, selected at the high-risk infants follow-up clinic at the Hospital das Clinicas, Faculdade de Medicine de Botucatu, Universidade Estadual Paulista (UNESP) in Botucatu, Brazil, between 1998 to 2003, and assessed every 2 months until acquisition of independent walking.Results: Nine percent of the 155 preterms recruited were excluded from the study, leaving a total of 143 patients. The mean gestational age was 30 +/- 2 weeks, birth weight was 1,130 +/- 222 g, 59% were female and 44% were small for gestational age. Preterms achieved head control in their second month, could sit independent at 7 months and walked at 12.8 months' corrected age, corresponding to the 4th, 9th and 15th months of chronological age. There were significant differences between chronological age and corrected age for all motor abilities. Preterms who were small for their gestational age acquired motor abilities later, but still within expected limits.Conclusions: Very low birth weight preterms, free from neurosensory disorders, acquired their motor abilities within the ranges expected for their corrected ages. Corrected age should be used until independent walking is achieved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: It is not yet established if the use of body weight support (BWS) systems for gait training is effective per se or if it is the combination of BWS and treadmill that improves the locomotion of individuals with gait impairment. This study investigated the effects of gait training on ground level with partial BWS in individuals with stroke during overground walking with no BWS.Methods: Twelve individuals with chronic stroke (53.17 +/- 7.52 years old) participated of a gait training program with BWS during overground walking, and were evaluated before and after the gait training period. In both evaluations, individuals were videotaped walking at a self-selected comfortable speed with no BWS. Measurements were obtained for mean walking speed, step length, stride length and speed, toe-clearance, durations of total double stance and single-limb support, and minimum and maximum foot, shank, thigh, and trunk segmental angles.Results: After gait training, individuals walked faster, with symmetrical steps, longer and faster strides, and increased toe-clearance. Also, they displayed increased rotation of foot, shank, thigh, and trunk segmental angles on both sides of the body. However, the duration of single-limb support remained asymmetrical between each side of the body after gait training.Conclusions: Gait training individuals with chronic stroke with BWS during overground walking improved walking in terms of temporal-spatial parameters and segmental angles. This training strategy might be adopted as a safe, specific and promising strategy for gait rehabilitation after stroke.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Robotic vehicle navigation in unstructured and uncertain environments is still a challenge. This paper presents the implementation of a multivalued neurofuzzy controller for autonomous ground vehicle (AGVs) in indoor environments. The control system consists of a hierarchy of mobile robot using multivalued adaptive neuro-fuzzy inference system behaviors.
Resumo:
The purpose of this study was to investigate the effects of an imposed external auditory constraint upon the temporal organization of walking. Ten subjects were videotaped walking normally (N) and with instructions to couple naturally, at mid-swing, or at toe-off to a metronome beat. Based upon an analysis of variance and post hoc Scheffe tests most temporal variables were not significantly different among conditions. The duration of swing phase was significantly different between natural coupling and toe-off. The deviation from the metronome beat was significantly different between the natural coupling and both mid-swing and toe-off. Subjects generally were not successful in achieving coupling during the latter conditions. Thigh and shank phase portraits were used to describe the system's organization to the external constraint.