3 resultados para Riemann Problem
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We derive the soliton matrices corresponding to an arbitrary number of higher-order normal zeros for the matrix Riemann-Hilbert problem of arbitrary matrix dimension, thus giving the complete solution to the problem of higher-order solitons. Our soliton matrices explicitly give all higher-order multisoliton solutions to the nonlinear partial differential equations integrable through the matrix Riemann-Hilbert problem. We have applied these general results to the three-wave interaction system, and derived new classes of higher-order soliton and two-soliton solutions, in complement to those from our previous publication [Stud. Appl. Math. 110, 297 (2003)], where only the elementary higher-order zeros were considered. The higher-order solitons corresponding to nonelementary zeros generically describe the simultaneous breakup of a pumping wave (u(3)) into the other two components (u(1) and u(2)) and merger of u(1) and u(2) waves into the pumping u(3) wave. The two-soliton solutions corresponding to two simple zeros generically describe the breakup of the pumping u(3) wave into the u(1) and u(2) components, and the reverse process. In the nongeneric cases, these two-soliton solutions could describe the elastic interaction of the u(1) and u(2) waves, thus reproducing previous results obtained by Zakharov and Manakov [Zh. Eksp. Teor. Fiz. 69, 1654 (1975)] and Kaup [Stud. Appl. Math. 55, 9 (1976)]. (C) 2003 American Institute of Physics.
Resumo:
It is a well known result that the Feynman's path integral (FPI) approach to quantum mechanics is equivalent to Schrodinger's equation when we use as integration measure the Wiener-Lebesgue measure. This results in little practical applicability due to the great algebraic complexibity involved, and the fact is that almost all applications of (FPI) - ''practical calculations'' - are done using a Riemann measure. In this paper we present an expansion to all orders in time of FPI in a quest for a representation of the latter solely in terms of differentiable trajetories and Riemann measure. We show that this expansion agrees with a similar expansion obtained from Schrodinger's equation only up to first order in a Riemann integral context, although by chance both expansions referred to above agree for the free. particle and harmonic oscillator cases. Our results permit, from the mathematical point of view, to estimate the many errors done in ''practical'' calculations of the FPI appearing in the literature and, from the physical point of view, our results supports the stochastic approach to the problem.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)