109 resultados para RAFT biomedicale polimeri micelle FRET DLS

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vesicle-micelle transition in aqueous mixtures of dioctadecyidimethylammonium and octadecyltrimethylammonium bromide (DODAB and C(18)TAB) cationic surfactants, having respectively double and single chain, was investigated by differential scanning calorimetry (DSQ, steady-state fluorescence, dynamic light scattering (DLS) and surface tension. The experiments performed at constant total surfactant concentration, up to 1.0 mM, reveal that these homologous surfactants mix together to form mixed vesicles and/or micelles, depending on the relative amount of the surfactants. The melting temperature T-m of the mixed DODAB-C(18)TAB vesicles is larger than that for the neat DODAB in water owing to the incorporation of C(18)TAB in the vesicle bilayer. The surface tension decreases sigmoidally with C(18)TAB concentration and the inflection point lies around (XDODAB) approximate to 0.4, indicating the onset of micelle formation owing to saturation of DODAB vesicles by C(18)TAB molecules. When XDODAB > 0.5 C(18)TAB molecules are mainly solubilised by the vesicles, but when XDODAB < 0.25 micelles are dominant. Fluorescence data of the Nile Red probe incorporated in the system at different surfactant molar fractions indicate the formation of micelle and vesicle structures. These structures have apparent hydrodynamic radius RH of about 180 and 500-800 nm, respectively, as obtained by DLS measurements. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the objective of obtaining slow-acting isoniazid derivatives, of potential use as chemoprophylactics or chemotherapeutics in tuberculosis, the micelle-forming copolymer of poly(ethylene glycol)-poly(aspartic acid) prodrug with isoniazid was synthesized. The derivative obtained was found to be active in Mycobacterium Il(tuberculosis culture, with a minimal inhibitory concentration (MIC) 5.6 times lower than that of the tuberculostatic drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrazinamide was condensed with the poly(ethylene glycol)-poly(aspartic acid) copolymer (PEG-PASP), a micelle-forming derivative was obtained that was characterized in terms of its critical micelle concentration (CMC) and micelle diameter. The CMC was found by observing the solubility of Sudan III in Poly(ethylene glycol)-poly(pyrazinamidomethyl aspartate) copolymer (PEG-PASP-PZA) solutions. The mean diameter of PEG-PASP-PZA micelles, obtained by analyzing the dynamic light-scattering data, was 78.2 nm. The PEG-PASP-PZA derivative, when assayed for anti-Mycobacterium activity, exhibited stronger activity than the simple drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the effect of mixing spontaneously formed dispersions of the cationic vesicle-forming dioctadecyldimethylammonium chloride and bromide (DODAX, with X being anions Cl- (C) or Br- (B)) with solutions of the micelle-forming nonionic ethylene oxide surfactants penta-, hepta-, and octaethyleneglycol mono-n-dodecyl ether, C12En (n = 5, 7, and 8), and the zwitterionic 3-(N-hexadecyl-N,N-dimethylammonio)propane sulfonate (HPS). We used for this purpose differential scanning calorimetry (DSC), turbidity, and steady-state fluorescence spectroscopy to investigate the vesicle-micelle (V-M) transition yielded by adding C12En and HPS to 1.0 mM vesicle dispersions of DODAC and DODAB. The addition of these surfactants lowers the gel-to-liquid crystalline phase transition temperature (T-m) of DODAC and DODAB, and the transition becomes less cooperative, that is, the thermogram transition peak shifts to lower temperature and broadens to disappear when the V-M transition is complete, the vesicle bilayer becomes less organized, and the T., decreases, in agreement with measurements of the fluorescence quantum yield of trans-diphenylpolyene (t-DPO) fluorescence molecules incorporated in the vesicle bilayer. Turbidity data indicate that the V-M transition comes about in three stages: first surfactants are solubilized into the vesicle bilayer; after saturation, the vesicles are ruptured, and, finally, the vesicles are completely solubilized and only mixed micelles are formed. The critical points of bilayer saturation and vesicle solubilization were obtained from the turbidity and fluorescence curves, and are reported in this communication. The solubility of DODAX is stronger for C12En than it is for HPS, meaning that C12En solubilizes DODAX more efficiently than does HPS. The surfactant solubilization depends slightly on the counterion, and varies according to the sequence C12E5 > C12E7 > C12E8 > HPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixtures of dioctadecyldimethylammonium chloride (DODAC) cationic vesicle dispersions with aqueous micelle solutions of the anionic sodium cholate (NaC) were investigated by differential scanning calorimetry, DSC, turbidity and light scattering. Within the concentration range investigated (constant 1.0 mM DODAC and varying NaC concentration up to 4 mM), vesicle -> micelle -> aggregate transitions were observed. The turbidity of DODAC/NaC/water depends on time and NaC/DODAB molar concentration ratio R. At equilibrium, turbidity initially decreases smoothly with R to a low value (owing to the vesicle-micelle transition) when R = 0.5-0.8 and then increases steeply to a high value (owing to the micelle-aggregate transition) when R = 0.9-1.0. DSC thermograms exhibit a single and sharp endothermic peak at T-m approximate to 49 degrees C, characteristic of the melting temperature of neat DODAC vesicles in water. Upon addition of NaC, T-m initially decreases to vanish around R = 0.5, and the main transition peak broadens as R increases. For R > 1.0 two new (endo- and exothermic) peaks appear at lower temperatures indicating the formation of large aggregates since the dispersion is turbid. All samples are non-birefringent. Dynamic light scattering (DLS) data indicate that both DODAC and DODAC/NaC dispersions are highly polydisperse, and that the mean size of the aggregates tends to decrease as R increases. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used isothermal titration calorimetry to investigate the vesicle-to-micelle transition in dioctadecyldimethylammonium bromide (DODAB) and chloride (DODAC) vesicle dispersions induced by the nonionic surfactant octaethylene glycol n-dodecyl monoether (C12E8) at room temperature. Small and giant unilamellar vesicles were prepared by sonication and without sonication, respectively, of the pure cationic surfactants at low concentrations in water. The titration of 1.0 mM DODAX (X = Cl- and Br-) by a concentrated micellar solution of C12E8 shows that the enthalpy of interaction (DeltaH(obs)) of C12E8 in micellar form with DODAX is always endothermic. The titration curves are understood on the basis of superposition of the enthalpies of partitioning of C12E8 into the bilayer, of micelle formation and of vesicle-to-micelle transformation. The enthalpy, DeltaH(obs), initially increases owing to the incorporation of C12E8 into the vesicle bilayer until the C12E8/DODAX saturation ratio (R-sat) is reached, then DeltaH(obs) decreases, in different ways for DODAB and DODAC, owing to degradation of vesicles and formation of mixed micelles and intermediary structures up to the C12E8/DODAX solubilization ratio, R-sol. Above R-sol only mixed micelles exist. The surfactant solubilization takes place in three stages. All the critical ratios are lower for DODAB than for DODAC, meaning that C12E8 solubilizes more strongly in DODAB for example, R-sat is 0.8 for DODAB and 1.2 for DODAC. Sonication has no significant effect on the transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bothropstoxin-I (BthTx-I) is a Lys49-PLA(2) from the venom of Bothrops jararacussu that lacks detectable catalytic activity, yet causes rapid Ca2+-independent membrane damage. With the aim of understanding the interaction between BthTx-I and amphiphilic molecules, we have studied the interaction of sodium dodecyl sulphate (SDS) with the protein. Circular dichroism and attenuated total reflection Fourier-transform infrared spectra of BthTx-I reveal changes in the alpha-helical organization of the protein at an SDS/BthTx-I molar ratio of 20-25. At SDS/BthTx-I ratios of 40-45 the alpha-helices return to a native-like conformation, although fluorescence emission anisotropy measurements of 2-amino-N-hexadecyl-benzamide (AHBA) demonstrate that the total SDS is below the critical micelle concentration when this transition occurs. These results may be interpreted as the result of SDS accumulation by the BthTx-I homodimer and the formation of a pre-micelle SDS/BthTx-I complex, which may subsequently be released from the protein surface as a free micelle. Similar changes in the alpha-helical organization of BthTx-I were observed in the presence of dipalmitoylphosphatidylcholine liposomes, suggesting that protein structure transitions coupled to organization changes of bound amphiphiles may play a role in the Ca2+-independent membrane damage by Lys49-PLA(2)s. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used dynamic light scattering (DLS), a steady-state fluorescence, time resolved fluorescence quenching (TRFQ), tensiometry, conductimetry, and isothermal titration calorimetry (ITC) to investigate the self-assembly of the cationic surfactant cetyltrimethylammonium sulfate (CTAS) in aqueous solution, which has SO42- as divalent counterion. We obtained the critical micelled concentration (cmc), aggregation number (N-agg), area per monomer (a(0)), hydrodynamic radius (R-H), and degree of counterion dissociation (alpha) of CTAS micelles in the absence and presence of up to 1 M Na2SO4 and at temperatures of 25 and 40 degrees C. Between 0.01 and 0.3 M salt the hydrodynamic radius of CTAS micelle R-H approximate to 16 angstrom is roughly independent on Na2SO4 concentration; below and above this concentration range R-H increases steeply with the salt concentration, indicating micelle structure transition, from spherical to rod-like structures. R-H increases only slightly as temperature increases from 25 to 40 degrees C, and the cmc decreases initially very steeply with Na2SO4 concentration up to about 10 mM, and thereafter it is constant. The area per surfactant at the water/air interface, a(0), initially increases steeply with Na2SO4 concentration, and then decrases above ca. 10 mM. Conductimetry gives alpha = 0.18 for the degree of counterion dissociation, and N-agg obtained by fluorescence methods increases with surfactant concentration but it is roughly independent of up to 80 mM salt. The ITC data yield cmc of 0.22 mM in water, and the calculated enthalpy change of micelle formation, Delta H-mic = 3.8 kJ mol(-1), Gibbs free energy of micellization of surfactant molecules, Delta G(mic) = -38.0 kJ mol(-1) and entropy T Delta S-mic = 41.7 kJ mol(-1) indicate that the formation of CTAS micelles is entropy-driven. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used surface tension measurements, differential scanning calorimetry (DSC), dynamic light scattering (DLS), and cryo-transmission electron microscopy (cryo-TEM) to investigate the dynamic and structural behavior of octadecyltrimethylammonium bromide (C(18)TAB) micelles in water and NaBr solution. The surface tension data for fixed C(18)TAB concentrations of 25 mM and varied NaBr additions (0-50 mM) shows that the critical micelle concentration (cmc) increases after an initial decrease at 0.5 mM NaBr. This unusual effect has been explained using results from DSC and DLS. At low salt concentrations (below ca. 25 mM) the relaxation time distribution is bimodal with a dominant fast mode due to spherical micelles. Above ca. 35 mM NaBr disklike structures are favored and the relaxation time distribution is more closely unimodal. The postulated sphere-to-disk transition is supported by cryo-TEM micrographs. A pronounced increase in the micellar effective hydrodynamic radius (R-H) is observed as the NaBr concentration is increased above about 35 mM; below 35 mM the R-H of the spherical micelles changes Little with ionic strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic light scattering (DLS), time-resolved fluorescence quenching (TRFQ), and isothermal titration microcalorimetry have been used to show that, in dilute solution, low molecular weight poly(ethylene glycol) (PEG, M-w = 12 kDa) interacts with the nonionic surfactant octaethylene glycol n-dodecyl monoether, C12E8, to form a complex. Whereas the relaxation time distributions for the binary C12E8/water and PEG/water systems are unimodal, in the ternary mixtures they may be either uni- or bimodal depending on the relative concentrations of the components. At low concentrations of PEG or surfactant, the components of the relaxation time distribution are unresolvable, but the distribution becomes bimodal at higher concentrations of either polymer or surfactant. For the ternary system in excess surfactant, we ascribe, on the basis of the changes in apparent hydrodynamic radii and the scattered intensities, the fast mode to a single micelle, the surface of which is associated with the polymer and the slow mode to a similar complex but containing two or three micelles per PEG chain. Titration microcalorimetry results show that the interaction between C12E8, and PEG is exothermic and about 1 kJ mol(-1) at concentrations higher than the CMC of C12E8. The aggregation number, obtained by TRFQ, is roughly constant when either the PEG or the C12E8 concentration is increased at a given concentration of the second component, owing to the increasing amount of surfactant micelles inside the complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudoternary phase diagrams, at 25 degrees C, were constructed for the systems soy bean oil (SBO)/surfactant/water, with single anionic sodium bis(2-ethylhexyl)sulfosuccinate (AOT), nonionic monoolein (MO) and mixtures of these surfactants, showing the isotropic phase of W/O microemulsions (MEs). The area of ME formation in the phase diagrams was shown to be dependent of the relative amount of surfactants, being larger for MO:AOT equals to 2:1. Rheological and dynamic light scattering (DLS) studies indicated that the viscosity of the isotropic ME phase exhibited two different behaviors depending on composition. The viscosity of dry MEs initially decreased with increasing amount of water following a dilution line in the phase diagram, i.e., a constant surfactant:SBO percentage ratio. As the water content increased the relative viscosity attained a minimum and then increased. This minimum could be related to the transition between two ME regions, L-2 and L'(2), having different characteristics. DLS measurements confirm the existence of ordinary W/O ME droplets in the L-2 region and suggest the existence of another structure in the L'(2) region. The size of the MEs droplets in L-2 phase ranges from 3.6 to 16.5 nm, depending on composition of SBO, surfactant and water. Small angle X-ray scattering (SAXS) also indicates the existence of structures with different characteristics, for the SAXS curves exhibit a typical micelle asymmetrical peak at low scattering vector q for MEs in L-2 but a symmetrical correlation peak at higher q vector in L'(2). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glossoscolex paulistus (HbGp) hemoglobin is an oligomeric protein, presenting a quaternary structure constituted by 144 globin and 36 non-globin chains (named linkers) with a total molecular mass of 3.6MDa. SDS effects on the oxy-HbGp thermal stability were studied, by DLS and SAXS, at pH 5.0, 7.0 and 9.0. DLS and SAXS data show that the SDS-oxy-HbGp interactions induce a significant decrease of the protein thermal stability, with the formation of larger aggregates, at pH 5.0. At pH 7.0, oxy-HbGp undergoes complete oligomeric dissociation, with increase of temperature, in the presence of SDS. Besides, oxy-HbGp 3.0mg/mL, pH 7.0, in the presence of SDS, has the oligomeric dissociation process reduced as compared to 0.5mg/mL of protein. At pH 9.0, oxy-HbGp starts to dissociate at 20°C, and the protein is totally dissociated at 50°C. The thermal dissociation kinetic data show that oxy-HbGp oligomeric dissociation at pH 7.0, in the presence of SDS, is strongly dependent on the protein concentration. At 0.5mg/mL of protein, the oligomeric dissociation is complete and fast at 40 and 42°C, with kinetic constants of (2.1±0.2)×10-4 and (5.5±0.4)×10-4s-1, respectively, at 0.6mmol/L SDS. However, at 3.0mg/mL, the oligomeric dissociation process starts at 46°C, and only partial dissociation, accompanied by aggregates formation is observed. Moreover, our data show, for the first time, that, for 3.0mg/mL of protein, the oligomeric dissociation, denaturation and aggregation phenomena occur simultaneously, in the presence of SDS. Our present results on the surfactant-HbGp interactions and the protein thermal unfolding process correspond to a step forward in the understanding of SDS effects. © 2013 Elsevier B.V.