7 resultados para Qualitative spatial reasoning
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The use of technologies called computedassisted, such as CAD - (Computed Aided Design), CAM - (Computed Aided Manufacturing) and CNC - (Computed Numerical Control), increasingly demanded by the market, are needed in the teaching of subjects technical drawing and design courses for engineering and design. However its use findl barriers in the more conservative wing of the academy, who advocate the use of traditional drawing, for the settling of the concepts and the development of spatial reasoning. This study aimed to show the results obtained with the design and production of an apparatus for measuring a three-dimensional computer-aided milling machine, interaction, integration and consolidation of concepts, fully demonstrating that the learning of computer-assisted technology is possible, and its use is most appropriate, meaningful and productive, than the use of instruments in the classic design.
Resumo:
Two studies were carried out to analyze whether learning technical drawing improves a person's ability for spatial visualization. Visualization and inductive reasoning tests were applied at the beginning and end of a course in technical drawing in samples of first year engineering students. In both studies it was observed that a moderate percentage of students improved their Visualization test execution. The improvement was similar in men and women. There was no improvement on the inductive reasoning test. The results support the conclusion that the spatial visualization ability can be improved with training.
Resumo:
The spatial dynamics of three blowfly species was investigated using a spatially extended model of density-dependent population growth and the results indicate an overall stabilizing effect. Introduction of diffusive dispersal induced a quantitative effect of damping variation in population size on the route to a one-fixed point equilibrium in the native species, Cochliomyia macellaria. On the other hand, diffusive dispersal caused qualitative shifts in the dynamics of two invading species, Chrysomya megacephala and Chrysomya putoria. In both species diffusive dispersal can produce a qualitative shift from a two-point limit cycle to a one fixed-point dynamics. Quantitatively, dispersal also has the effect of damping oscillations in population size in the invading species.
Resumo:
Considering the importance of monitoring the water quality parameters, remote sensing is a practicable alternative to limnological variables detection, which interacts with electromagnetic radiation, called optically active components (OAC). Among these, the phytoplankton pigment chlorophyll a is the most representative pigment of photosynthetic activity in all classes of algae. In this sense, this work aims to develop a method of spatial inference of chlorophyll a concentration using Artificial Neural Networks (ANN). To achieve this purpose, a multispectral image and fluorometric measurements were used as input data. The multispectral image was processed and the net training and validation dataset were carefully chosen. From this, the neural net architecture and its parameters were defined to model the variable of interest. In the end of training phase, the trained network was applied to the image and a qualitative analysis was done. Thus, it was noticed that the integration of fluorometric and multispectral data provided good results in the chlorophyll a inference, when combined in a structure of artificial neural networks.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this work is to investigate microscopic correlations between trace elements in breast human tissues. A synchrotron X-ray fluorescence microprobe system (μ-XRF) was used to obtain two-dimensional distribution of trace element Ca, Fe, Cu and Zn in normal (6 samples) and malignant (14 samples) breast tissues. The experiment was performed in X-ray Fluorescence beam line at Laboratório Nacional de Luz Síncrotron (LNLS), Campinas, Brazil. The white microbeam was generated with a fine conical capillary with a 20 μm output diameter. The samples were supported on a XYZ table. An optical microscope with motorized zoom was used for sample positioning and choice the area to be scanned. Automatic two-dimensional scans were programmed and performed with steps of 30 μm in each direction (x, y) on the selected area. The fluorescence signals were recorded using a Si(Li) detector, positioned at 90 degrees with respect to the incident beam, with a collection time of 10 s per point. The elemental maps obtained from each sample were overlap to observe correlation between trace elements. Qualitative results showed that the pairs of elements Ca-Zn and Fe-Cu could to be correlated in malignant breast tissues. Quantitative results, achieved by Spearman correlation tests, indicate that there is a spatial correlation between these pairs of elements (p < 0.001) suggesting the importance of these elements in metabolic processes associated with the development of the tumor.