20 resultados para Pressure support
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Objective: To compare intermittent mandatory ventilation (IMV) with synchronized intermittent mandatory ventilation plus pressure support (SIMV+PS) in terms of time on mechanical ventilation, duration of weaning and length of stay in a pediatric intensive care unit (PICU).Methods: This was a randomized clinical trial that enrolled children aged 28 days to 4 years who were admitted to a PICU between October of 2005 and June of 2007 and put on mechanical ventilation (MV) for more than 48 hours. These patients were allocated to one of two groups by drawing lots: IMV group (IMVG; n = 35) and SIMV+PS group (SIMVG; n = 35). Children were excluded if they had undergone tracheotomy or had chronic respiratory diseases. Data on oxygenation and ventilation were recorded at admission and at the start of weaning.Results: There were no statistical differences between the groups in terms of age, sex, indication for MV, PRISM score, Comfort scale, use of sedatives or ventilation and oxygenation parameters. The median time on MV was 5 days for both groups (p = 0.120). There were also no statistical differences between the two groups for duration of weaning [IMVG: 1 day (1-6) vs. SIMVG: 1 day (1-6); p = 0.262] or length of hospital stay [IMVG: 8 days (2-22) vs. SIMVG: 6 days (3-20); p = 0.113].Conclusion: Among the children studied here, there was no statistically significant difference between IMV and SIMV+ PS in terms of time on MV, duration of weaning or time spent in the PICU.ClinicalTrials.govID: NCT00549809.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigated the effects of injection into the supraoptic nucleus (SON) of losartanand PD 123319 (nonpeptide AT(1) and AT(2)- angiotensin II [ANG II] receptor antagonists, respectively); d(CH2)(5)-Tyr(Me)-AVP (AVPA; an arginine-vasopressin [AVP] V-1 receptor antagonist), FK 409 (a nitric oxide [NO] donor), and N-W-mtro-(L)-arginine methyl ester ((L)-NAME; an NO synthase inhibitor) oil water intake, sodium chloride 3% (NaCl) intake and arterial blood pressure induced by injection of ANG 11 into the lateral septal area (LSA). Mate Holtzman rats (250-300 g) were implanted with cannulae into SON and LSA unilaterally. The drugs were injected in 0.5 mul over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. ANG II was injected at a dose of 10 pmol. ANG II antagonists and AVPA were injected at doses of 80 nmol. FK 409 and (L)-NAME were injected at doses of 20 and 40 mug, respectively. Water and NaCl intake was measured over a 2-h period. Prior administration of losartan into the SON decreased water and NaCl intake induced by injection of ANG II. While there was a decrease in water intake, ANG II-induced NaCl intake was significantly increased following injection of AVPA. FK 409 injection decreased water intake and sodium intake induced by ANG II. L-NAME alone increased water and sodium intake and induced a pressor effect. (L)-NAME-potentiated water and sodium intake induced by ANG II. PD 123319 produced no changes in water or sodium intake induced by ANG II. The prior administration of losartan or AVPA decreased mean arterial pressure (MAP) induced by ANG II. PD 123319 decreased the pressor effect of ANG II to a lesser degree than losartan. FK 409 decreased the pressor effect of ANG II while (L)-NAME potentiated it. These results suggest that both ANG II AT, and AVP V, receptors and NO within the SON may be involved in water intake, NaCl intake and the pressor response were induced by activation of ANG II receptors within the LSA. These results do not support the involvement of LSA AT(2) receptors in the mediation of water and NaCl intake responses induced by ANG II, but influence the pressor response. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The pipe flow of a viscous-oil-gas-water mixture such as that involved in heavy oil production is a rather complex thereto-fluid dynamical problem. Considering the complexity of three-phase flow, it is of fundamental importance the introduction of a flow pattern classification tool to obtain useful information about the flow structure. Flow patterns are important because they indicate the degree of mixing during flow and the spatial distribution of phases. In particular, the pressure drop and temperature evolution along the pipe is highly dependent on the spatial configuration of the phases. In this work we investigate the three-phase water-assisted flow patterns, i.e. those configurations where water is injected in order to reduce friction caused by the viscous oil. Phase flow rates and pressure drop data from previous laboratory experiments in a horizontal pipe are used for flow pattern identification by means of the 'support vector machine' technique (SVM).
Resumo:
The demand by high performance materials that have to support severe service conditions at a reasonable cost has been forcing the powder metallurgy to improve constantly. The most recent and more important innovation in the area is the process of powder injection.Powder injection molding (PIM) is a technology capable of producing a new range of components from powders. This advanced technology overcomes the existent limitations in the forming of products with complex geometry. The process presents countless variations which are used in the industry today. Invariably, it consists of mixing the powders and a thermo-plastic binder, injecting the mass in the mold in the wanted form, debinding, sintering and making optional secondary operations, as for example, machinery.The purpose of this work is to review the metal injection molding techniques and apply the low pressure injection molding process to family of parts using metallic powder with 10 mum particle size. This work also comments the design and construction of a low pressure injection machine and injection molds. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The surface pressure-molecular area (pi-A) isotherms for Langmuir monolayers of four perylenetetracarboxylic (PTCD) derivatives, measured with varying subphase temperatures and compression speeds, are reported. The behavior of these PTCD derivatives at the water-air interface is modeled using the rigid docking method. This approach is the first attempt to model the molecular orientation of PTCD on the water surface to be compared with experimental Langmuir isotherms. Through this methodology, it would be possible to anticipate aggregation and determine if favorable spatial orientations of perylenes are generated on the water surface. The pi-A isotherm experiments show that these molecules can support high surface pressures, indicating strong packing on the water surface and that the isotherms are compression speed independent but temperature dependent. The molecular orientation and stacking was further examined in Langmuir-Blodgett (LB) monolayers deposited onto glass and glass coated with Ag island films using UV-visible absorption and surface-enhanced fluorescence (SEF) measurements.
Resumo:
The study of the influence of motion and initial intra-articular pressure (IAP) on intra-articular pressure profiles in equine cadaver metatarsophalangeal (MTP) joints was undertaken as a prelude to in vivo studies, Eleven equine cadaver MTP joints were submitted to 2 motion frequencies of 5 and 10 cycles/min of flexion and extension, simulating the condition of lower and higher (double) rates of passive motion. These frequencies were applied and pressure profiles generated with initial normal intra-articular pressure (-5 mmHg) and subsequently 30 mmHg intra-articular pressure obtained by injection of previously harvested synovial fluid.The 4 trials performed were 1) normal IAP; 5 cyles/min; 2) normal IAP; 10 cycles/min; 3) IAP at 30 mmHg; 5 cycles/min and 4) IAP at 30 mmHg; 10 cycles/min. The range of joint motion applied (mean +/- s.e.) was 67.6 +/- 1.61 degrees with an excursion from 12.2 +/- 1.2 degrees in extension to 56.2 +/- 2.6 degrees in flexion, Mean pressure recorded in mmHg for the first and last min of each trial, respectively, were 1) -5.7 +/- 0.9 and -6.3 +/- 1.1; 2) -5.3 +/- 1.1 and -6.2 +/- 1.1; 3) 58.8 +/- 8.0 and 42.3 +/- 7.2; 4) 56.6 +/- 3.7 and 40.3 +/- 4.6. Statistical analyses showed a trend for difference between the values for the first and last minute in trial 3 (0.05>P<0.1) with P = 0.1 and significant difference (P = 0.02) between the mean IAP of the first and last min in trial 4. The loss of intra-articular pressure associated with time and motion was 10.5, 16.9, 28.1 and 28.9% for trials 1-4, respectively. As initial intraarticular pressure and motion increased, the percent loss of intra-articular pressure increased.The angle of lowest pressure was 12.2 +/- 1.2
Resumo:
Some tendons wrap around joints and receive compressive forces besides transferring the tension forces from muscle to bone. These tendons develop a fibrocartilaginous structure which enables them to withstand pressure. This article describes the existence and distribution of microfibrils (or preelastic fibers) in the pressure-bearing tendons of rabbits and dogs by the application of histochemical assays and transmission electron microscopy. Rabbit and dog tendons possess no mature elastic fibers. The rabbit tendon exhibits some response to Weigert's method prior to oxidation which indicates the existence of the so-called elaunin fibers, especially in the pressure zone. Oxidation with peracetic acid or oxone discloses intricate aspects of the oxytalan fiber distribution in both tension and pressure zones of the dog and rabbit tendons. Bundles of 12 nm microfibrils were demonstrated in the rabbit tendon by electron microscopy after fixation in the presence of tannic acid. The existence of preelastic fibers in the pressure-bearing tendons has been neglected and they are assumed to have importance in the microarchitecture of the tissue and in the ability of the tendon to support tension and compression forces.
Resumo:
The results observed in this work support the view that coronary perfusion pressure affects ventricular performance independently of metabolic effects; a mechanism operating in beat-to-beat regulation is proposed.
Resumo:
The bladder pressure necessary to cause vesicoureteral reflux (VUR) was measured in 16 female rats. Under general anesthesia, the ureters were exposed via an abdominal incission and a pressure catheter was placed near the uterovesical junction. Values of bladder distension and bladder pressure increase to cause VUR were obtained by injecting isotonic saline in one ureter until VUR in the opposite ureter was detected as a sudden pressure increase. After 5 min the same procedure was done on the contralateral side. This procedure was repeated eight times in each rat with a 15-min intermission. The bladder pressure at which VUR occurred was measured through a uretral catheter. Two groups were studied: G1, control, and G2, administration of intravenous metoclopramide (0.007 mg/100 g body weight) four times.
Resumo:
Cardiovascular responses to central losartan (LOS), a non-peptide angiotensin II (ANG II) receptor antagonist, were investigated by comparing the effects of LOS injection into the 3rd and 4th cerebral ventricles (3rdV, 4thV) on mean arterial pressure (MAP) and heart rate (HR). Adult male Holtzman rats were used (N=6 animals per group). Average basal MAP and HR were 114±3 mmHg and 343±9 bpm (N=23), respectively. LOS (50, 100 or 200 nmol/2 μl) injected into the 3rdV induced pressor (peak of 25±3 mmHg) and tachycardic (peak of 60±25 bpm) responses. LOS injected into the 4thV had no effect on MAP, but it induced bradycardia (peak of -35±15 bpm). KCl (200 nmol/2 μl) injected into the 3rdV or into the 4thV had no effect on either MAP or HR compared to 0.9% saline injection. The results indicate that LOS injected into the third ventricle acts on forebrain structures to induce its pressor and tachycardic effects and that bradycardia, likely dependent on hindbrain structures, is obtained when LOS is injected into the fourth ventricle.