157 resultados para Polynomial Expansion
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Nonlinear effects on the early stage of phase ordering are studied using Adomian's decomposition method for the Ginzburg-Landau equation for a nonconserved order parameter. While the long-time regime and the linear behavior at short times of the theory are well understood, the onset of nonlinearities at short times and the breaking of the linear theory at different length scales are less understood. In the Adomians decomposition method, the solution is systematically calculated in the form of a polynomial expansion for the order parameter, with a time dependence given as a series expansion. The method is very accurate for short times, which allows to incorporate the short-time dynamics of the nonlinear terms in a analytical and controllable way. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this work, the problem in the loads transport (in platforms or suspended by cables) it is considered. The system in subject is composed for mono-rail system and was modeled through the system: inverted pendulum, car and motor and the movement equations were obtained through the Lagrange equations. In the model, was considered the interaction among of the motor and system dynamics for several potencies motor, that is, the case studied is denominated a non-ideal periodic problem. The non-ideal periodic problem dynamics was analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, one was made it analyzes quantitative of the problem through the analysis of the Floquet multipliers. Finally, the non-ideal problem was controlled. The method that was used for analysis and control of non-ideal periodic systems is based on the Chebyshev polynomial expansion, in the Picard iterative method and in the Lyapunov-Floquet transformation (L-F trans formation). This method was presented recently in [3-9].
Resumo:
The Fitzhugh-Nagumo (fn) mathematical model characterizes the action potential of the membrane. The dynamics of the Fitzhugh-Nagumo model have been extensively studied both with a view to their biological implications and as a test bed for numerical methods, which can be applied to more complex models. This paper deals with the dynamics in the (FH) model. Here, the dynamics are analyzed, qualitatively, through the stability diagrams to the action potential of the membrane. Furthermore, we also analyze quantitatively the problem through the evaluation of Floquet multipliers. Finally, the nonlinear periodic problem is controlled, based on the Chebyshev polynomial expansion, the Picard iterative method and on Lyapunov-Floquet transformation (L-F transformation).
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Micro-electromechanical systems (MEMS) are micro scale devices that are able to convert electrical energy into mechanical energy or vice versa. In this paper, the mathematical model of an electronic circuit of a resonant MEMS mass sensor, with time-periodic parametric excitation, was analyzed and controlled by Chebyshev polynomial expansion of the Picard interaction and Lyapunov-Floquet transformation, and by Optimal Linear Feedback Control (OLFC). Both controls consider the union of feedback and feedforward controls. The feedback control obtained by Picard interaction and Lyapunov-Floquet transformation is the first strategy and the optimal control theory the second strategy. Numerical simulations show the efficiency of the two control methods, as well as the sensitivity of each control strategy to parametric errors. Without parametric errors, both control strategies were effective in maintaining the system in the desired orbit. On the other hand, in the presence of parametric errors, the OLFC technique was more robust.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work are studied periodic perturbations, depending on two parameters, of planar polynomial vector fields having an annulus of large amplitude periodic orbits, which accumulate on a symmetric infinite heteroclinic cycle. Such periodic orbits and the heteroclinic trajectory can be seen only by the global consideration of the polynomial vector fields on the whole plane, and not by their restriction to any compact set. The global study involving infinity is performed via the Poincare Compactification. It is shown that, for certain types of periodic perturbations, one can seek, in a neighborhood of the origin in the parameter plane, curves C-(m) of subharmonic bifurcations, for which the periodically perturbed system has subharmonics of order m, for any integer m.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Wavelet functions have been used as the activation function in feedforward neural networks. An abundance of R&D has been produced on wavelet neural network area. Some successful algorithms and applications in wavelet neural network have been developed and reported in the literature. However, most of the aforementioned reports impose many restrictions in the classical backpropagation algorithm, such as low dimensionality, tensor product of wavelets, parameters initialization, and, in general, the output is one dimensional, etc. In order to remove some of these restrictions, a family of polynomial wavelets generated from powers of sigmoid functions is presented. We described how a multidimensional wavelet neural networks based on these functions can be constructed, trained and applied in pattern recognition tasks. As an example of application for the method proposed, it is studied the exclusive-or (XOR) problem.
Resumo:
In this paper, we described how a multidimensional wavelet neural networks based on Polynomial Powers of Sigmoid (PPS) can be constructed, trained and applied in image processing tasks. In this sense, a novel and uniform framework for face verification is presented. The framework is based on a family of PPS wavelets,generated from linear combination of the sigmoid functions, and can be considered appearance based in that features are extracted from the face image. The feature vectors are then subjected to subspace projection of PPS-wavelet. The design of PPS-wavelet neural networks is also discussed, which is seldom reported in the literature. The Stirling Universitys face database were used to generate the results. Our method has achieved 92 % of correct detection and 5 % of false detection rate on the database.
Resumo:
The paper presents an extended genetic algorithm for solving the optimal transmission network expansion planning problem. Two main improvements have been introduced in the genetic algorithm: (a) initial population obtained by conventional optimisation based methods; (b) mutation approach inspired in the simulated annealing technique, the proposed method is general in the sense that it does not assume any particular property of the problem being solved, such as linearity or convexity. Excellent performance is reported in the test results section of the paper for a difficult large-scale real-life problem: a substantial reduction in investment costs has been obtained with regard to previous solutions obtained via conventional optimisation methods and simulated annealing algorithms; statistical comparison procedures have been employed in benchmarking different versions of the genetic algorithm and simulated annealing methods.
Resumo:
In this paper, an efficient genetic algorithm (GA) is presented to solve the problem of multistage and coordinated transmission expansion planning. This is a mixed integer nonlinear programming problem, difficult for systems of medium and large size and high complexity. The GA presented has a set of specialized genetic operators and an efficient form of generation of the initial population that finds high quality suboptimal topologies for large size and high complexity systems. In these systems, multistage and coordinated planning present a lower investment than static planning. Tests results are shown in one medium complexity system and one large size high complexity system.
Resumo:
A combinatorial mathematical model in tandem with a metaheuristic technique for solving transmission network expansion planning (TNEP) using an AC model associated with reactive power planning (RPP) is presented in this paper. AC-TNEP is handled through a prior DC model while additional lines as well as VAr-plants are used as reinforcements to cope with real network requirements. The solution of the reinforcement stage can be obtained by assuming all reactive demands are supplied locally to achieve a solution for AC-TNEP and by neglecting the local reactive sources, a reactive power planning (RPP) will be managed to find the minimum required reactive power sources. Binary GA as well as a real genetic algorithm (RCA) are employed as metaheuristic optimization techniques for solving this combinatorial TNEP as well as the RPP problem. High quality results related with lower investment costs through case studies on test systems show the usefulness of the proposal when working directly with the AC model in transmission network expansion planning, instead of relaxed models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)