14 resultados para Polymer Chemistry

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microwave energy has been used as an alternative method for disinfection and sterilization of dental prostheses. This study evaluated the influence of microwave treatment on dimensional accuracy along the posterior palatal border of maxillary acrylic resin denture bases processed by water-bath curing. Thirty maxillary acrylic bases (3-mm-thick) were made on cast models with Clássico acrylic resin using routine technique. After polymerization and cooling, the sets were deflasked and the bases were stored in water for 30 days. Thereafter, the specimens were assigned to 3 groups (n=10), as follows: group I (control) was not submitted to any disinfection cycle; group II was submitted to microwave disinfection for 3 min at 500 W; and in group III microwaving was done for 10 min at 604 W. The acrylic bases were fixed on their respective casts with instant adhesive (Super Bonder®) and the base/cast sets were sectioned transversally in the posterior palatal zone. The existence of gaps between the casts and acrylic bases was assessed using a profile projector at 5 points. No statistically significant differences were observed between the control group and group II. However, group III differed statistically from the others (p<0.05). Treatment in microwave oven at 604 W for 10 min produced the greatest discrepancies in the adaptation of maxillary acrylic resin denture bases to the stone casts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis of a series of omega-hydroxyfatty acid (omega-OHFA) monomers and their methyl ester derivatives (Me-omega-OHFA) from mono-unsaturated fatty acids and alcohols via ozonolysis-reduction/crossmetathesis reactions is described. Melt polycondensation of the monomers yielded thermoplastic poly(omega-hydroxyfatty acid)s [-(CH2)(n)-COO-](x) with medium (n = 8 and 12) and long (n = 17) repeating monomer units. The omega-OHFAs and Me-omega-OHFAs were all obtained in good yield (>= 80%) and purity (>= 97%) as established by H-1 NMR, Fourier Transform infra-red spectroscopy (FT-IR), mass spectroscopy (ESI-MS) and high performance liquid chromatography (HPLC) analyses. The average molecular size (M-n) and distribution (PDI) of the poly(omega-hydroxyfatty acid)s (P(omega-OHFA)s) and poly(omega-hydroxyfatty ester) s (P(Me-omega-OHFA) s) as determined by GPC varied with organo-metallic Ti(IV) isopropoxide [Ti(OiPr)(4)] polycondensation catalyst amount, reaction time and temperature. An optimization of the polymerization process provided P(omega-OHFA) s and P(Me-omega-OHFA) s with M-n and PDI values desirable for high end applications. Co-polymerization of the long chain (n = 12) and medium chain (n = 8) Me-omega-OHFAs by melt polycondensation yielded poly(omega-hydroxy tridecanoate/omega-hydroxy nonanoate) random co-polyesters (M-n = 11000- 18500 g mol(-1)) with varying molar compositions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor-acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence and absorption, as well as nanosecond transient absorption spectroscopy to study the initial charge transfer step for blends of a donor poly(p-phenylenevinylene) derivative and low-band gap cyanine dyes serving as electron acceptors. Electron transfer is the dominant relaxation process after photoexcitation of the donor. Hole transfer after cyanine photoexcitation occurs with an efficiency close to unity up to dye concentrations of similar to 30 wt%. Cyanines present an efficient self-quenching mechanism of their fluorescence, and for higher dye loadings in the blend, or pure cyanine films, this process effectively reduces the hole transfer. Comparison between dye emission in an inert polystyrene matrix and the donor matrix allowed us to separate the influence of self-quenching and charge transfer mechanisms. Favorable photovoltaic bilayer performance, including high open-circuit voltages of similar to 1 V confirmed the results from optical experiments. The characteristics of solar cells using different dyes also highlighted the need for balanced adjustment of the energy levels and their offsets at the heterojunction when using low-bandgap materials, and accentuated important effects of interface interactions and solid-state packing on charge generation and transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The new complex [Cu(NCS)(2)(pn)] (1) (pn = 1,3-propanediamine) has been synthesized and characterized by elemental analysis, infrared and electronic spectroscopy. Single crystal X-ray diffraction studies revealed that complex 1 is made up of neutral [Cu(NCS)(2)(pn)] units which are connected by mu-1,3,3-thiocyanato groups to yield a 2D metal-organic framework with a brick-wall network topology. Intermolecular hydrogen bonds of the type NH...SCN and NH...NCS are also responsible for the stabilization of the crystal structure. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[GRAPHICS]This work proposes a combined swelling-electron paramagnetic resonance (EPR) approach aiming at determining some unusual polymer solvation parameters relevant for chemical processes occurring inside beads. Batches of benzhydrylamine-resin (BHAR), a copolymer of styrene-1% divinylbenzene containing phenylmethylamine groups were, labeled with the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amine-4-carboxylic acid (TOAC), and their swelling properties and EPR spectra were examined in DCM and DMF. By taking into account the BHARs labeling degrees, the corresponding swelling values, and some polymer structural characteristics, it was possible to calculate polymer swelling parameters, among them, the volume and the number of sites per bead, site-site distances and site concentration. The latter values ranged from 17 to 170 angstrom and from 0.4 to 550 mM, respectively. EPR spectroscopy was applied to validate the multistep calculation strategy of these swelling parameters. Spin-spin interaction was detected in the labeled resins at site-site distances less than approximately 60 A or probe concentrations higher than approximately 1 x 10(-2) M, in close agreement with the values obtained for the spin probe free in solution. Complementarily, the yield of coupling reactions in different resins indicated that the greater the inter-site distance or the lower the site concentration, the faster the reaction. The results suggested that the model and the experimental measurements developed for the determination of solvation parameters represent a relevant step forward for the deeper understanding and improvement of polymer-related processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant progress is being made in the photovoltaic energy conversion using organic semiconducting materials. One of the focuses of attention is the morphology of the donor-acceptor heterojunction at the nanometer scale, to ensure efficient charge generation and loss-free charge transport at the same time. Here, we present a method for the controlled, sequential design of a bilayer polymer cell architecture that consists of a large interface area with connecting paths to the respective electrodes for both materials. We used the surface-directed demixing of a donor conjugated/guest polymer blend during spin coating to produce a nanostructured interface, which was, after removal of the guest with a selective solvent, covered with an acceptor layer. With use of a donor poly(p-phenylenevinylene) derivative and the acceptor C-60 fullerene, this resulted in much-improved device performance, with external power efficiencies more than 3 times higher than those reported for that particular material combination so far.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports on the synthesis of a copper(II) coordination compound with 4,4-oxibis(benzoate) (obb) and trans-1,2- bis(4-pyridyl)ethene (bpe) ligands. The complex was characterized by single-crystal X-ray diffraction, which showed a 3D polymeric structure. Each copper center is surrounded by four oxygen atoms at the basal plane and one nitrogen atom and one copper atom at the axial positions, revealing a distorted octahedral geometry. Four carboxylic groups bridge two copper atoms, forming a cage-like structure, with the distance between the metallic centers being 2.656(1)Å. 2008 © The Japan Society for Analytical Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma processing of the surfaces of biomaterials is interesting because it enables modification of the characteristics of a surface without affecting bulk properties. In addition, the results are strongly influenced by the conditions of the treatment. Therefore, by adjusting the plasma parameters it is possible to tailor the surface properties to best fulfill the requirements of a given application. In this work, polyurethane substrates have been subjected to sulfur hexafluoride glow discharge plasmas. The influences of different SF 6 plasma exposure times and pressures on the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa to the polymer have been investigated. The wettability and surface free energy have been evaluated via contact angle measurements. At low pressure (6.7 Pa) the contact angle decreases with increasing exposure time in the 180 s to 540 s interval, but at higher pressure (13.3 Pa) it increases as a function of the same variable. Bacterial adhesion has been quantified from in vitro experiments by determining the growth of colonies on Petri dishes treated with agar nutrient. It has been observed that the surface properties play an important role in microbe adhesion. For instance, the density of adhered P. aeruginosa decreased as the surface contact angle increased. S. aureus preferred to adhere to hydrophobic surfaces. © 2011 by Begell House, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims and objectives: The behavior of polymer-matrix composite is dependent on the degree of conversion. The aim of this study was to evaluate the degree of conversion of two resin cements following storage at 37°C immediately, 24 and 48 hours, and 7 days after light-curing by FTIR analysis. Materials and methods: The specimens were made in a metallic mold and cured with blue LED with power density of 500 mW/cm2 for 30 seconds. The specimens were pulverized, pressed with KBr and analyzed with FTIR following storage times. Statistical analysis used: ANOVA (two-way) and Tukey's post hoc. Results: To the polymer-matrix composites between 24 and 48 hours does not show a significant increase (p > 0.05), however, the highest values were found after 7 days. Conclusion: The polymer-matrix composites used in this study showed similarity on the degree of conversion and increased of according to the time of storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents an efficient method for the preparation of magnetic nanoparticles modified with molecularly imprinted polymers (Mag-MIP) through core-shell method for the determination of biotin in milk food samples. The functional monomer acrylic acid was selected from molecular modeling, EGDMA was used as cross-linking monomer and AIBN as radical initiator. The Mag-MIP and Mag-NIP were characterized by FTIR, magnetic hysteresis, XRD, SEM and N2-sorption measurements. The capacity of Mag-MIP for biotin adsorption, its kinetics and selectivity were studied in detail. The adsorption data was well described by Freundlich isotherm model with adsorption equilibrium constant (KF) of 1.46 mL g(-1). The selectivity experiments revealed that prepared Mag-MIP had higher selectivity toward biotin compared to other molecules with different chemical structure. The material was successfully applied for the determination of biotin in diverse milk samples using HPLC for quantification of the analyte, obtaining the mean value of 87.4% recovery.