143 resultados para Polyethylene glycol
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Meconium (MEC) is a potent inactivator of pulmonary surfactant. The authors studied the effects of polyethylene glycol addition to the exogenous surfactant over the lung mechanics and volumes. Human meconium was administrated to newborn rabbits. Animals were ventilated for 20 minutes and dynamic compliance, ventilatory pressure, and tidal volume were recorded. Animals were randomized into 3 study groups: MEC group (without surfactant therapy); S100 group (100 mg/kg surfactant); and PEG group (100 mg/kg porcine surfactant plus 5% PEG). After ventilation, a pulmonary pressure-volume curve was built. Histological analysis was carried out to calculate the mean alveolar size (Lm) and the distortion index (DI). Both groups treated with surfactant showed higher values of dynamic pulmonary compliance and lower ventilatory pressure, compared with the MEC group (P .05). S100 group had a larger maximum lung volume, V30, compared with the MEC group (P .05). Lm and DI values were smaller in the groups treated with surfactant than in the MEC group (P .05). No differences were observed between the S100 and PEG groups. Animals treated with surfactant showed significant improvement in pulmonary function as compared to nontreated animals. PEG added to exogenous surfactant did not improve lung mechanics or volumes.
Resumo:
Lipases from oilseeds have a great potential for commercial exploration as industrial enzymes. Lipases are used mixed with surfactants in cleaning and other formulated products, and accordingly, both components must be compatible with each other. This work presents the results of the effects of anionic, cationic and nonionic surfactants, polyethylene glycol and urea on the activity and stability of a lipase extracted of oilseeds from Pachira aquatica. The enzyme was purified and the spectrophotometric assays were done using p-nitrophenyl acetate (p-NPA) as substrate pH 7.5 and 25 degrees C. The activity was significantly enhanced by the cationic surfactant CTAB. Bile salts increased the lipase activity in the tested concentration range, whereas anionic and nonionic surfactants showed an inhibitory effect. Aqueous solutions of PEG activated the lipase and maximum activation (161%) occurred in PEG 12,000. This effect on lipase that can be due to exposition of some hydrophobic residues located in the vicinity of the active site or aggregation.
Resumo:
Essential oils (EOs) are technological options that may be employed in natural foods due to their antimicrobial activities. However, restrictions exist when high EOs concentrations are required which, in their turn, affect sensory qualities. Technological alternatives, such as combination of EOs with chelating and dispersing agents, have been proposed in the literature. Current research determined the antimicrobial activity of cinnamon EO against microbial spoilage in yogurt when added at the highest acceptable sensory EO concentration, alone or associated with ethylenediaminetetraacetic acid (EDTA) and/or polyethylene glycol. Cinnamon EO's chemical analysis was performed by gas chromatography-mass spectrometry (GC-MS). Sensory analysis was conducted to define the highest acceptable sensory concentration of cinnamon EO in yogurt, stipulated at 0.04% cinnamon EO. Antimicrobial activity in yogurt was then evaluated for aerobic mesophiles, psychrotrophilic microorganisms, yeasts and molds counts. Treatments comprised (1) control, (2) 0.04% EO, (3) 0.04% EO + 0.01% EDTA, (4) 0.04% EO + 0.02% polyethylene glycol; (5) 0.04% EO + 0.01% EDTA + 0.2% polyethylene glycol, in triplicates. Concentration 0.04% of cinnamon EO, alone or associated with EDTA and/or polyethylene glycol, failed to show any antimicrobial activity against aerobic mesophiles, yeasts and molds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The partitioning of Green Fluorescent Protein (GFP) in poly(ethylene glycol)/Na-poly(acrylate) aqueous two-phase systems (PEG/NaPA-ATPS) has been investigated. The aqueous two-phase systems are formed by mixing the polymers with a salt and a protein solution. The protein partitioning in the two-phase system was investigated at 25 degrees C. The concentration of the GFP was measured by fluorimetry. It was found that the partitioning of GFP depends on the salt type, pH and concentration of PEG. The data indicates that GFP partitions more strongly to the PEG phase in presence of Na2SO4 relative to NaCl. Furthermore, the GFP partitions more to the PEG phase at higher pH. The partition to the PEG phase is strongly favoured in systems with larger tie-line lengths (i.e. systems with higher polymer concentrations). The molecular weight of PEG is important since the partition coefficient (K) of GFP gradually decreases with increasing PEG size, from K ca. 300-400 for PEG 400 to K equal to 1.19 for PEG 8000. A separation process was developed where GFP was separated from a homogenate in two extraction steps: the GFP is first partitioned to the PEG phase in a PEG 3000/NaPA 8000 system containing 3 wt% Na2SO4, where the K value of GFP was 8. The GFP is then re-extracted to a salt phase formed by mixing the previous top-phase with a Na2SO4 solution. The K-value of GFP in this back-extraction was 0.22. The total recovery based on the start material was 74%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Phase diagrams of poly(ethylene glycol)/polyacrylate/Na2SO4 systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coil can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coil homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na2SO4-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The partition of hemoglobin, lysozyme and glucose-6-phospate dehydrogenase (G6PDH) in a novel inexpensive aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The effect of NaCl and Na2SO4, pH and PEG molecular size on the partitioning has been studied. At high pH (above 9), hemoglobin partitions strongly to the PEG-phase. Although some precipitation of hemoglobin occurs, high recovery values are obtained particularly for lysozyme and G6PDH. The partitioning forces are dominated by the hydrophobic and electrochemical (salt) effects, since the positively charged lysozyme and negatively charged G6PDH partitions to the non-charged PEG and the strongly negatively charged polyacrylate enriched phase, respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Terpolymers of N-isopropylacrylamide, dodecyl methacrylate (DOMA) and poly(ethylene glycol) (PEG) methacrylate, were synthesized by random copolymerization, and the composition was controlled to achieve systems having different thermosensitivities. H-1 NMR spectra and gel permeation chromatography (GPC) were employed to characterize the different samples obtained. The solution properties were studied by employing spectrophotometry, fluorescence, and dynamic light scattering techniques. The chemical compositions in the final terpolymers are close to those in the feed. The polymers exhibited cloud point temperatures (T-es) varying from 17 to 52 degrees C. Micropolarity studies using I-1/I-3 ratio of the vibronic bands of pyrene show the formation of amphiphilic aggregates capable of incorporating hydrophobic drugs as the polymer concentration is increased. The critical aggregation concentration (CAC) increases from 3.6 x 10(-3) to 1 x 10(-2) g/l with the PEG content varying from 5 to 35 mol%. Anisotropy measurements confirm the results obtained by pyrene fluorescence and show that the aggregates resulting from intermolecular interactions present different organizations. The hydrodynamic diameters (Dh) of the aggregates determined by dynamic light scattering (DLS) vary from 40 to 150 nm depending on the terpolymer composition. The T-cs and Dh values decreased with the ionic strength, and this behavior was attributed to the dehydration of the polymeric micelles. The capacity of solubilization of the aggregates was evaluated by employing pyrene, and the obtained results confirm the ability to incorporate hydrophobic molecules. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Estudos conduzidos em laboratório ou em condições de campo demonstram o potencial alelopático da espécie Sorghum bicolor L., seja inibindo a germinação e o desenvolvimento de plantas daninhas ou até mesmo de plantas cultivadas em sucessão. Com o objetivo de avaliar os efeitos potencialmente alelopáticos de extratos aquosos das folhas, caules e raízes de cinco híbridos de sorgo (SARA, DKB860, DKB 599, XBG00478 e XBG06020), sobre a germinação e o desenvolvimento de plântulas de soja, cv. MG/BR 46 (Conquista), foram conduzidos dois bioensaios no período de março a junho de 2002. Foram estabelecidas como testemunhas: água destilada (com pH 8,0); água destilada com pH ajustado para 4,5; água destilada com pH ajustado para 6,0 e solução de polietilenoglicol (PEG) equivalente ao potencial osmótico de 0,1 MPa. Dentre as características avaliadas, houve efeito significativo apenas no comprimento de radícula das plântulas de soja, sendo que aquelas tratadas com os extratos de sorgo apresentaram menor radícula, diferindo significativamente das plântulas testemunhas. Observou-se que, com os extratos de raízes dos híbridos SARA, DKB860, XBG00478 e XBG06020 ocorreram os menores comprimentos de radículas de soja, diferindo do DKB 599. O extrato de folhas do XBG00478 resultou em menor média, não diferindo dos extratos de DKB860, DKB599 e XBG06020. No entanto, para o extrato de caule, o SARA resultou em menor radícula, diferindo apenas do XBG00478. Verificou-se, também, que, para os extratos de DKB860 e XBG00478, os extratos de folhas proporcionaram menor média, diferindo dos extratos de raiz e caule, enquanto para DKB599, XBG06020 e SARA, não houve diferença significativa entre os extratos de folha e caule.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Studies of the germination response of seeds subjected to artificial stresses are provided tools for better understanding of the survivability and adaptation of these species in natural stress conditions such as drought or saline soils, common in agricultural and forest regions, contributing significantly to the development of management strategies. Thus, the purpose of this study was to evaluate the possible effects of water and salt stress on germination of Urochloa decumbens and Urochloa ruziziensis. The test was conducted at the Faculty of Technology of São Paulo, campus of Capon Bonito. The seeds were sown with four replicates of 50 seeds in paper soaked in solutions with the potentials of 0.0, -0.2, -0.4 and -0.8 MPa, induced with polyethylene glycol (PEG 6000) and NaCl. The germination test was conducted at 25 degrees C in the presence of light, evaluating the first test score at seven days after sowing, and weekly germination (normal seedlings) until 35 days. We calculated the index of germination rate. The results allowed the conclusion that water stress causes a greater reduction in force, speed of germination and cumulative germination of seeds of U. decumbens and U. ruziziensis than salt stress. The species U. decumbens showed higher tolerance to water and salt stresses.
Resumo:
O objetivo desta pesquisa foi obter informações que possam favorecer o entendimento da atuação dos compostos alelopáticos sobre o banco de sementes do solo e sobre a seleção de plantas invasoras e indicar espécies que favoreçam a renovação dos pastos. Assim, soluções de solo de uma área de pastagem de Brachiaria brizantha cv. Marandu formada há mais de cinco anos foram extraídas para avaliar os efeitos alelopáticos dessa espécie sobre a germinação, a dormência de sementes e o vigor de plântulas de B. brizantha cv. Marandu, Panicum maximum cv. Tanzânia, Sida rhombifolia e Peschiera fuchsiaefolia. O experimento foi instalado e conduzido no Laboratório de Matologia do Departamento de Produção Vegetal da FCA/UNESP - campus de Botucatu-SP. O substrato de germinação foi umedecido com 12 mL dos seguintes tratamentos: solução do solo de uma área cultivada com B. brizantha; solução do solo de uma área sem B. brizantha (mata nativa); água destilada; solução de polietilenoglicol com potencial osmótico idêntico ao da solução do solo sob B. brizantha; e solução de polietilenoglicol com potencial osmótico idêntico ao da solução de solo de uma mata nativa. A porcentagem de sementes normais, mortas, anormais e dormentes de B. brizantha não foi influenciada por nenhuma das soluções testadas, o que evidencia a não-ocorrência de efeito auto-alelopático. Foram verificados possíveis efeitos alelopáticos negativos sobre a porcentagem e velocidade de germinação de P. maximum cv. Tanzânia e sobre o crescimento radicular de S. rhombifolia. Esta última também se mostrou sensível ao efeito alelopático da solução de solo de mata, que promoveu redução no crescimento radicular. P. fuchsiaefolia não foi afetada por nenhuma das soluções testadas.