12 resultados para Pluto
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This work generates, through a sample of numerical simulations of the restricted three-body problem, diagrams of semimajor axis and eccentricity which defines stable and unstable zones for particles in S-type orbits around Pluto and Charon. Since we consider initial conditions with 0 <= e <= 0.99, we found several new stable regions. We also identified the nature of each one of these newly found stable regions. They are all associated to families of periodic orbits derived from the planar circular restricted three-body problem. We have shown that a possible eccentricity of the Pluto-Charon system slightly reduces, but does not destroy, any of the stable regions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In a previous work, GiuliattiWinter et al. found several stable regions for test particles in orbit around Pluto associated with families of periodic orbits obtained in the circular, restricted three-body problem. They have shown that a possible eccentricity of the Pluto-Charon binary slightly reduces but does not destroy any of these stable regions. In thiswork, we extended their results by analysing the cases with the orbital inclination (I) equal to zero and considering the argument of pericentre (w) equal to 90°, 180° and 270°. We explore the influence of the orbital inclination of the particles in these stable regions. In this case, the initial inclination varies from 10° to 170° in steps of 10°. We also present a sample of results for the longitude of the ascending node Ω = 90°, considering the cases I = 20°, 50°, 130° and 180°. Our results show that stable regions are present in all of the inclined cases, except when the initial inclination of the particles is equal to 110°. A sample of 3D trajectories of quasi-periodic orbits were found related to the periodic orbits obtained in the planar case by Giuliatti Winter et al. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
Impacts of micrometeoroids on the surfaces of the plutonian small satellites Nix and Hydra can generate dust particles. Even in this region so far from the Sun these tiny ejected particles are under the effects of the solar radiation pressure. In this work, we investigate the orbital evolution of the escaping ejecta from both the small satellites under the effects of the radiation pressure combined with the gravitational effects of Pluto, Charon, Nix and Hydra. The mass production rate of micron-sized dust particles generated by micrometeoroids hitting the satellites is obtained, and numerical simulations are performed to derive the lifetime of the ejecta. These pieces of information allow us to estimate the optical depth of a putative ring, which extends from the orbits of Nix to Hydra. The ejected particles, between the orbits of Nix and Hydra, form a wide ring of about 16 000 km. Collisions with the massive bodies and escape from the system are mainly determined by the effects of the solar radiation pressure. This is an important loss mechanism, removing 30 per cent of the initial set of 1 μm-sized particles in 1 yr. The surviving particles form a ring too faint to be detectable with the derived maximum optical depth of 4 × 10-11. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)