115 resultados para Photonic Bandgap (PBG)

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the bandgap effect and the thermo-optical response of high-index liquid crystal (LC) infiltrated in photonic crystal fibers (PCF) and in hybrid photonic crystal fibers (HPCF). The PCF and HPCF consist of solid-core microstructured optical fibers with hexagonal lattice of air-holes or holes filled with LC. The HPCF is built from the PCF design by changing its cladding microstructure only in a horizontal central line by including large holes filled with high-index material. The HPCF supports propagating optical modes by two physical effects: the modified total internal reflection (mTIR) and the photonic bandgap (PBG). Nevertheless conventional PCF propagates light by the mTIR effect if holes are filled with low refractive index material or by the bandgap effect if the microstructure of holes is filled with high refractive-index material. The presence of a line of holes with high-index LC determines that low-loss optical propagation only occurs on the bandgap condition. The considered nematic liquid crystal E7 is an anisotropic uniaxial media with large thermo-optic coefficient; consequently temperature changes cause remarkable shifts in the transmission spectrums allowing thermal tunability of the bandgaps. Photonic bandgap guidance and thermally induced changes in the transmission spectrum were numerically investigated by using a computational program based on the beam propagation method. © 2010 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor-acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence and absorption, as well as nanosecond transient absorption spectroscopy to study the initial charge transfer step for blends of a donor poly(p-phenylenevinylene) derivative and low-band gap cyanine dyes serving as electron acceptors. Electron transfer is the dominant relaxation process after photoexcitation of the donor. Hole transfer after cyanine photoexcitation occurs with an efficiency close to unity up to dye concentrations of similar to 30 wt%. Cyanines present an efficient self-quenching mechanism of their fluorescence, and for higher dye loadings in the blend, or pure cyanine films, this process effectively reduces the hole transfer. Comparison between dye emission in an inert polystyrene matrix and the donor matrix allowed us to separate the influence of self-quenching and charge transfer mechanisms. Favorable photovoltaic bilayer performance, including high open-circuit voltages of similar to 1 V confirmed the results from optical experiments. The characteristics of solar cells using different dyes also highlighted the need for balanced adjustment of the energy levels and their offsets at the heterojunction when using low-bandgap materials, and accentuated important effects of interface interactions and solid-state packing on charge generation and transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variation of photoconductivity excitation with wavelength is applied to Si-doped Al0.56Ga0.44As (indirect bandgap material) for a wide range of temperature. The lower the temperature the lower the photocurrent below 70 K. In the range 13-30 K there is a decrease in the photoconductivity spectrum slightly above the bandgap transition energy, followed by another increase in the conductivity. We interpret these results in the light of existing models and confirm the trapping by the X-valley effective mass state. which is responsible for attenuation of persistent photoconductivity below 70 K. A DX0 intermediate state which has non-negligible lifetime is proposed as responsible for the decrease in the photoconductivity with about 561 nm of wavelength of exciting light, in the investigated 13-30 g range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the fabrication and analysis of a three-dimensional FCC photonic crystal (PhC) based on a self-assembly synthesis of monodispersive latex spheres. Experimental optical characterization, achieved by measurements of the specular reflectance under variable angles, indicated the clear presence of a Bragg diffraction pattern. Results are further explored by theoretical calculations based on the Finite Difference Time Domain (FDTD) method to determine the full PhC band structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoexpansion and photobleaching effects have been examined in glass compositions Ga10Ge25S65 and Ga5Ge25As5S65. Such compositions are promising for optical storage and planar waveguide applications. To evaluate the photoinduced effect, samples were exposed to 351 nm light, varying power density (3-10 W/cm(2)) and exposure time (0-120 min). The exposed areas have been analyzed using atomic force microscopy (AFM) and an expansion of 800 nm is observed for composition Ga10Ge25S65 exposed during 120 min and 5 W/cm(2) power density. The optical absorption edge measured by a spectrophotometer indicates a blue shift (80 nm) after illumination in the composition Ga10Ge25S65. The morphology was examined using a scanning electron microscopy (SEM). The chemical compositions measured using a energy dispersive analyzer (EDX) indicate an increase of the number of sulfur atoms in the irradiated area. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photonic modes of Thue-Morse and Fibonacci lattices with generating layers A and B, of positive and negative indices of refraction, are calculated by the transfer-matrix technique. For Thue-Morse lattices, as well for periodic lattices with AB unit cell, the constructive interference of reflected waves, corresponding to the zero(th)-order gap, takes place when the optical paths in single layers A and B are commensurate. In contrast, for Fibonacci lattices of high order, the same phenomenon occurs when the ratio of those optical paths is close to the golden ratio. In the long wavelength limit, analytical expressions defining the edge frequencies of the zero(th) order gap are obtained for both quasi-periodic lattices. Furthermore, analytical expressions that define the gap edges around the zero(th) order gap are shown to correspond to the = 0 and = 0 conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents for the first time to our knowledge the fabrication and characterization of rib waveguides produced with PbO-GeO2 (PGO) thin films. The target was manufactured using pure oxides ( 60 PbO-40 GeO2, in wt%) and amorphous thin films were produced with the RF sputtering technique. PGO thin films present small absorption in the visible and in the near infrared and refractive index of similar to 2.0. The definition of the rib waveguide structure was made using conventional optical lithography followed by plasma etching, performed in a Reactive Ion Etching (RIE) reactor. Light propagation mode in the waveguide structure was analyzed using integrated optic simulation software. Optical loss measurements were performed to determine the propagation loss at 633 nm, for ribs with height of 70 nm and width of 3-5 mu m; experimental values around 2 dB/cm were found for the propagation loss and confirmed the theoretical calculations. The results obtained demonstrate that PGO thin films are potential candidates for application in integrated optics. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we demonstrated the fabrication of two-dimensional (2D) photonic crystals layers (2D-PCLs) by combining holographic recording and the evaporation of antimony-based glasses. Such materials present high refractive indices that can be tuned from 1.8 to 2.4, depending on the film composition; thus, they are interesting dielectric materials for fabrication of 2D-PCLs. The good quality of the obtained samples allowed the measurement of their PC properties through the well-defined Fano resonances that appear in the transmittance spectrum measurements at different incidence angles. The experimental results are in good agreement with the calculated band diagram for the hexagonal asymmetric structure. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monochromatic light excitation in conjunction with thermally stimulated depolarization current measurements are applied to indirect bandgap AlxGa1-xAs. The obtained average activation energy for dipole relaxation is in very close agreement with the DX center binding energy. Monochromatic light induces state transition in the defect and makes possible the identification of dipoles observed in the dark. Charge relaxation currents are destroyed by photoionization of Al0.5Ga0.5As using either 647 nm Kr+ or 488 nm Ar+ laser lines, which are above the DX center threshold photoionization energy. It suggests that correlation may exist among charged donor states DX--d+. Sample resistance as a function of temperature is also measured in the dark and under illumination and shows the probable X valley effective mass state participation in the electron trapping. Ionization with energies of 0.8 eV and 1.24 eV leads to striking current peak shifts in the thermally stimulated depolarization bands. Since vacancies are present in this material, they may be responsible for the secondary band observed in the dark as well as participation in the light induced recombination process.