8 resultados para Parallel plates
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In this work we show how to define the action of a scalar field such that the Robin boundary condition is implemented dynamically, i.e. as a consequence of the stationary action principle. We discuss the quantization of that system via functional integration. Using this formalism, we derive an expression for the Casimir energy of a massless scalar field under Robin boundary conditions on a pair of parallel plates, characterized by constants c(1) and c(2). Some special cases are discussed; in particular, we show that for some values of cl and c(2) the Casimir energy as a function of the distance between the plates presents a minimum. We also discuss the renormalization at one-loop order of the two-point Green function in the philambda(4) theory subject to the Robin boundary condition on a plate.
Resumo:
We compute the leading radiative correction to the Casimir force between two parallel plates in the lambdaPhi(4) theory. Dirichlet and periodic boundary conditions are considered. A heuristic approach, in which the Casimir energy is computed as the sum of one-loop corrected zero-point energies, is shown to yield incorrect results, but we show how to amend it. The technique is then used in the case of periodic boundary conditions to construct a perturbative expansion which is free of infrared singularities in the massless limit. In this case we also compute the next-to-leading order radiative correction, which turns out to be proportional to lambda(3/2).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
This paperaims to determine the velocity profile, in transient state, for a parallel incompressible flow known as Couette flow. The Navier-Stokes equations were applied upon this flow. Analytical solutions, based in Fourier series and integral transforms, were obtained for the one-dimensional transient Couette flow, taking into account constant and time-dependent pressure gradients acting on the fluid since the same instant when the plate starts it´s movement. Taking advantage of the orthogonality and superposition properties solutions were foundfor both considered cases. Considering a time-dependent pressure gradient, it was found a general solution for the Couette flow for a particular time function. It was found that the solution for a time-dependent pressure gradient includes the solutions for a zero pressure gradient and for a constant pressure gradient.
Resumo:
We present analytical and numerical results for the specific heat and susceptibility amplitude ratios in parallel plate geometries. The results are derived using field-theoretic techniques suitable to describe the system in the bulk limit, i.e., (L/ξ±)≫ 1, where L is the distance between the plates and ξ± is the correlation length above (+) and below (-) the bulk critical temperature. Advantages and drawbacks of our method are discussed in the light of other approaches previously reported in the literature.