75 resultados para POWER LASER
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The influence of daily energy doses of 0.03, 0.3 and 0.9 J of He-Ne laser irradiation on the repair of surgically produced tibia damage was investigated in Wistar rats. Laser treatment was initiated 24 h after the trauma and continued daily for 7 or 14 days in two groups of nine rats (n=3 per laser dose and period). Two control groups (n=9 each) with injured tibiae were used. The course of healing was monitored using morphometrical analysis of the trabecular area. The organization of collagen fibers in the bone matrix and the histology of the tissue were evaluated using Picrosirius-polarization method and Masson's trichrome. After 7 days, there was a significant increase in the area of neoformed trabeculae in tibiae irradiated with 0.3 and 0.9 J compared to the controls. At a daily dose of 0.9 J (15 min of irradiation per day) the 7-day group showed a significant increase in trabecular bone growth compared to the 14-day group. However, the laser irradiation at the daily dose of 0.3 J produced no significant decrease in the trabecular area of the 14-day group compared to the 7-day group, but there was significant increase in the trabecular area of the 15-day controls compared to the 8-day controls. Irradiation increased the number of hypertrophic osteoclasts compared to non-irradiated injured tibiae (controls) on days 8 and 15. The Picrosirius-polarization method revealed bands of parallel collagen fibers (parallel-fibered bone) at the repair site of 14-day-irradiated tibiae, regardless of the dose. This organization improved when compared to 7-day-irradiated tibiae and control tibiae. These results show that low-level laser therapy stimulated the growth of the trabecular area and the concomitant invasion of osteoclasts during the first week, and hastened the organization of matrix collagen (parallel alignment of the fibers) in a second phase not seen in control, non-irradiated tibiae at the same period. The active osteoclasts that invaded the regenerating site were probably responsible for the decrease in trabecular area by the fourteenth day of irradiation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Today's scientific interest in tissue engineering for organ transplantations and regeneration from stem cells, allied with recent observations on biostimulation of tissues and cells by laser radiation, stands as a strong motivation for the present work, in which we examine the effects of the low power laser radiation onto planarians under regenerative process. To investigate those effects, a number of 60 amputated worms were divided in three study groups: a control group and two other groups submitted to daily 1 and 3 min long laser treatment sections at similar to 910 W/m(2) power density. A 685 nm diode laser with 35 mW optical power was used. Samples were sent to histological analysis at the 4th, the 7th and the 15th (lays after amputation. A remarkable increase in stem cells counts for the fourth day of regeneration was observed when the regenerating worms was stimulated by the laser radiation. Our findings encourage further research works on the influence of optical radiation onto stem cells and tissue regeneration. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the effects of the laser radiation (685 nm) associated with photosensitizers on viability of different species of Candida genus. Suspensions of Candida albicans, Candida dubliniensis, Candida krusei and Candida tropicalis, containing 106 viable cells per milliliter were obtained with the aid of a Neubauer's chamber. From each species, 10 samples of the cell suspension were irradiated with diode laser (685 nm) with 28 J/cm(2) in the presence of methylene blue (0.1 mg/ml), 10 samples were only treated with methylene blue, 10 samples were irradiated with laser in the absence of the dye, 10 samples were treated with the dye and irradiated with laser light and 10 samples were exposed to neither the laser light nor to the methylene blue dye. From each sample, serial dilutions of 10(-2) and 10(-3) were obtained and aliquots of 0.1 ml of each dilution were plated in duplicate on Sabouraud dextrose agar. After incubation at 37 degrees C for 48 h, the number of colony-forming units (CFU/ml) was obtained and data were submitted to ANOVA and Tukey's test (p < 0.05). Laser radiation in the presence of methylene blue reduced the number of CFU/ml in 88.6% for C. albicans, 84.8% for C. dubliniensis, 91.6% for C krusei and 82.3% for C tropicalis. Despite of this, only laser radiation or methylene blue did not reduce significantly the number of CFU/ml of Candida samples, except for C tropicalis. It could be concluded that the photo activation of methylene blue by the red laser radiation at 685 nm presented fungicide effect on all Candida species studied. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Low-intensity laser has been used as a physical agent in various fields of medical sciences such as bone and tissue repair. Meanwhile little is known about its effects in adverse conditions such as abolition of load and osteopenic. With the assumption that the laser Ga-Al-As accelerates the process of bone consolidation, goal of this study was to evaluate bone mineral density (BMD) in incomplete transverse osteotomies of tibia in adult rats, treated with low power laser therapy in three different groups: G1 (n = 10), reference 15 days; G2 (n=10), suspended by the tail and, accordingly, treated with laser for 12 days; G3 (n = 10), suspended by the tail by 36 days and that after 21 days, there was laser treatment for 12 days. The right tibia treated with laser and left served as control. The laser was used to Ga-Al-As, DMC - Flash Lase® III, with wavelength 830nm, 100 mW, 4J, 140 J / cm ², 40s of application in 12 sessions. It was used densitometer-Lunar DPX®, with computer program for "small animals", and the analysis of BMD was made in the bone throughout the region and the osteotomy. The results showed no efficacy of laser therapy in the process of bone repair, both in animals of group 1, as in group 2 and 3. It follows that either the low-power laser was not an effective performance or the effects of laser therapy is not only manifested at the site of irradiation as well as the systemic level.
Resumo:
Staphylococcus spp. are opportunistic microorganisms known for their capacity to develop resistance against antimicrobial agents. The objective of this study was to evaluate the effect of photodynamic therapy (PDT) on 20 Staphylococcus strains isolated from the human oral cavity, including S. aureus, S. schleiferi, S. epidermidis, S. capitis, S. haemolyticus, and S. lentus. A suspension of each Staphylococcus strain (10(6) cells/mL) was submitted to PDT using methylene blue and a low power laser. The isolated effects of methylene blue, laser treatment and ciprofloxacin were also evaluated. After the experimental treatments, 0.1 mL aliquots of the suspensions were seeded onto BHI agar for determination of the number of colony-forming units (CFU/mL). The results were analyzed by analysis of variance and Tukey's test (p < 0.05). The mean reduction in bacterial counts of the strains submitted to PDT ranged from 4.89 to 6.83 CFU (log10)/mL, with the observation of a decreasing susceptibility to treatment of S. schleiferi, S. haemolyticus, S. epidermidis, S. capitis, S. aureus, and S. lentus. The results showed that PDT was effective in reducing the number of viable cells of all clinical Staphylococcus isolates studied.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: This study sought to assess if discoloration of tooth structures occurs after photodynamic therapy (PDT) and to determine the efficacy of a protocol to remove the photosensitizers. Background data: PDT has been used in root canal treatment to enhance cleaning and disinfection of the root canal system. PDT uses a low power laser in association with a dye as a photosensitizer. Photosensitizers can induce staining of the dental structures, resulting in an unaesthetic appearance. Methods: Forty teeth were randomly divided into four groups according to the photosensitizer used and pre-irradiation time: 0.01% methylene blue for 5 min (MB5); 0.01% methylene blue for 10 min (MB 10); 0.01% toluidine blue for 5 min (TB5); and 0.01% toluidine blue for 10 min (TB 10). Specimens were irradiated with a 660 nm diode laser with a 300 mu m diameter optical fiber, at 40 mW power setting for 3 min. Immediately after, the photosensitizers were removed with Endo-PTC cream +2.5% sodium hypochlorite (NaOCl). The shade was measured by a Vita Easyshade spectrophotometer based on the CIELAB color system (L*a*b* values) at three different experimental times: before PDT (T0), immediately after PDT (T1), and after removal of the photosensitizer (T2). Results: The results showed a decrease in the averages of the L*a*b* coordinate values after PDT (T1) in all the groups, when compared with the number at T0, with a significant statistical difference in group MB10. After photosensitizer removal (T2), all the values of the coordinates increased with significant statistical differences (p < 0.05) between T1 and T2 in L* and a*. Conclusions: It can be concluded that both methylene blue and toluidine blue dyes cause tooth discoloration, and that Endo-PTC cream associated with 2.5% NaOCl effectively remove these dyes, regardless of the pre-irradiation time used for PDT.