39 resultados para PHASE PARTICLES
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This study includes Ca-PZT in the morphotropic phase boundary, MPB process combining the Pechini method, (ZT) and the Partial oxalate method (Ca-PZT) by obtaining single phase particles of ZT phase with a high specific surface area (similar to 110 m(2)/g at 550 degrees C) and narrow particle size distribution. Lead and calcium oxalates were precipitated onto the ZT particle surface and reacted to a solid state interface ZT/Ca-PZT/PbO-CaO. A deviation of a coexistence region from F-T- and F-R-phases to F-R-phase (Zr rich region) was observed. Strong surface area reduction occurs by Ca-PZT crystallization at about 700 degreesC, and demonstrated high sinterability (2.40 m(2)/g - 350 nm) with apparent densities near to 99.9%. Different processing methods did not demonstrate superior results. Studies of calcined powder shows a high sinterability of powder calcined 3 h at 700 degrees C and sintered 3 h at 1000 degreesC coming up to 99.8% of relative density. (C) 2001 Kluwer Academic Publishers.
Resumo:
This article reports a study of the thermal stability and morphological changes in tin oxide nanobelts grown in the orthorhombic SnO phase. The nanobelts were heat-treated in a differential scanning calorimetry (DSC) furnace at 800 degrees C for I It in argon, oxygen, or synthetic air atmospheres. The samples were then characterized by DSC, X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and high resolution field emission scanning electron microscopy (FE-SEM). The results confirmed that the orthorhombic SnO phase is thermodynamically unstable, causing the belts to transform into the SnO2 phase when heat-treated. During the phase transition, if oxygen is available in the furnace atmosphere, nanofibers grow at the edge of nanobelts at about 50 degrees of the belts' growth direction, while particles grow on the belt surface in the absence of oxygen. Although the decomposition process reduces the nanobelt cell volume by 22%, most belts remain monocrystalline after the heat treatment. The results confirm that phase transition is a decomposition process, which explains the morphological changes in the belts based on metallic tin generated in the process.
Resumo:
Objective. To evaluate the content of inorganic particles and the flexural strength of new condensable composites for posterior teeth in comparison to hybrid conventional composites.Method. The determination of the content of inorganic particles was performed by mass weighing of a polymerized composite before and after the elimination of the organic phase. The volumetric particle content was determined by a practical method based on Archimedes' principle, which calculates the volume of the composite and their particles by differential mass measured in the air and in water. The flexural. strength of three points was evaluated according to the norm ISO 4049:1988.Results. The results showed the following filter content: Alert, 67.26%; Z-100, 65.27%; Filtek P 60, 62.34%; Ariston pHc, 64.07%; Tetric Ceram, 57.22%; Definite, 54.42%; Solitaire, 47.76%. In the flexural strength test, the materials presented the following decreasing order of resistance: Filtek P 60 (170.02 MPa) > Z-100 (151.34 MPa) > Tetric Ceram (126.14 MPa) = Alert (124.89 MPa) > Ariston pHc (102.00 MPa) = Definite (93.63 MPa) > Solitaire (56.71 MPa).Conclusion. New condensable composites for posterior teeth present a concentration of inorganic particles similar to those of hybrid composites but do not necessarily present higher flexural strength. (C) 2003 Elsevier B.V. Ltd. Alt rights reserved.
Resumo:
Several routes and procedures have been used in these last years as an effort to achieve single-phase mesoscopic-size superconducting samples. In this paper, the effects of using citric acid (CA), tartaric acid (TA) and ethylenediaminetetraacetic acid (EDTA) as chelating agents and ethylene-glycol (EG) as polyhydroxy alcohol were studied in order to establish conditions to avoid the occurrence of BaCO(3) undesirable secondary phase in YBa(2)Cu(3)O(7-delta) (YBCO). Thermal evolution of intermediate compounds formed during the calcinations process by the use of different chelating agents was traced using thermogravimetric and spectroscopic methods. The obtained results indicated that the polymer breakdown of samples prepared using EDTA occurs at higher temperatures than others chelating agents and also reduces the occurrence of BaCO(3) secondary phase as studied by X-ray diffraction measurements. Furthermore, the magnetic response of the mesoscopic-size YBCO specimens obtained was verified showing that samples present different superconducting response.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Some dynamical properties of an ensemble of trajectories of individual (non-interacting) classical particles of mass m and charge q interacting with a time-dependent electric field and suffering the action of a constant magnetic field are studied. Depending on both the amplitude of oscillation of the electric field and the intensity of the magnetic field, the phase space of the model can either exhibit: (i) regular behavior or (ii) a mixed structure, with periodic islands of regular motion, chaotic seas characterized by positive Lyapunov exponents, and invariant Kolmogorov-Arnold-Moser curves preventing the particle to reach unbounded energy. We define an escape window in the chaotic sea and study the transport properties for chaotic orbits along the phase space by the use of scaling formalism. Our results show that the escape distribution and the survival probability obey homogeneous functions characterized by critical exponents and present universal behavior under appropriate scaling transformations. We show the survival probability decays exponentially for small iterations changing to a slower power law decay for large time, therefore, characterizing clearly the effects of stickiness of the islands and invariant tori. For the range of parameters used, our results show that the crossover from fast to slow decay obeys a power law and the behavior of survival orbits is scaling invariant. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772997]
Resumo:
Nanocrystalline Al(2)O(3)powders have been synthesized by the polymeric precursor method. A study of the evolution of crystalline phases of obtained powders was accomplished through X-ray diffraction, micro-Raman spectroscopy and refinement of the structures through the Rietveld method. The results obtained allow the identification of three steps on the gamma-Al2O3 to alpha-Al2O3 phase transition. The single-phase alpha-Al2O3 Powder was obtained after heat-treatment at 1050 degrees C for 2 h. A study of the morphology of the particles was accomplished through measures of crystallite size, specific surface area and transmission electronic microscopy. The particle size is closely related to gamma-Al2O3 to alpha-Al2O3 phase transition. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this work is to obtain spherical particles YIG from micrometric to nanometric scales. The spherical particles were obtained from cation hydrolysis in acid medium by adding urea or ammonia in order to carry out a homogeneous nucleation process up to 90 degrees C. Different composition and morphology were achieved by changing reactant concentrations, precipitation agent and stabilizing agent. X-ray diffractometry, electrophoretic mobility, transmission and scanning electron microscopies were carried out on these particles to investigate the phase identification, mobility, morphology and particle size. Crystalline YIG, with spherical characteristics, was obtained. The surface potential presented different characteristics for different dispersion media.
Resumo:
Assuming q-deformed commutation relations for the fermions, an extension of the standard Lipkin Hamiltonian is presented. The usual quasi-spin representation of the standard Lipkin model is also obtained in this q-deformed framework. A variationally obtained energy functional is used to analyse the phase transition associated with the spherical symmetry breaking. The only phase transitions in this q-deformed model are of second order. As an outcome of this analysis a critical parameter is obtained which is dependent on the deformation of the algebra and on the number of particles.
Resumo:
Silica particles were obtained by addition of diluted soluble sodium silicate in sodium 1,2 bis (2-ethylhexyloxycarbonyl)-1-ethenesulfonate reverse microemulsions, in which aqueous phase was nitric acid solution and the water/surfactant ratio (W) was 5 or 10. Products, whether washed or not, were dried at 100 degrees C and suspended in different solvents: heptane, water, kerosene or pentane for making SEM measurements. Thermal treatments of washed silica samples were carried out at 900 degrees C and 1200 degrees C. Silica particles of sizes from 1 to 10 mu m were obtained at room temperature without changing their shape due to thermal treatment and crystallization. SEM micrographs show hollow particles suggesting that silica preferably polymerizes on microemulsion droplet interface where ionic strength of nitric acid aqueous solution is favourable for silica polymerization reaction. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Citrate solution was employed in preparing Pb(Mg1/3Nb1/3)O-3 (PMN) powder from polymeric precursors. BaTiO3 particles of 600 nm average size were used as seed for growing PMN. X-ray diffraction (XRD) indicated the presence of both, pyrochlore Pb6Nb6MgO22 (P6N) and perovskite phases. Transmission electron microscopy (TEM) observations indicated that only the PMN phase has hetero-epitaxially grown on the BaTiO3 seed particles. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
This work reports on the preparation, structural and luminescent studies of nanosized up-converter phosphors Y2O2S:Yb(4%), Er(0.1%) and Y2O2S:Yb(4%), Tm(0.1%),both from polymeric and basic carbonate precursors. The precursors were submitted to a sulphuration process that was previously developed for oxysulfide preparation from basic carbonate. From XRD data, all phosphors presented the oxysulfide phase and the mean crystallite size estimated from the Scherrer formula in the range of 15-20 nm. Polymeric precursor leads to the smallest crystallite size independent on the doping ion. SEM and TEM results confirmed that basic carbonate leads to spherical particles with narrow size distribution and mean diameter of 150 nm, and polymeric precursor smaller spherical particles with diameter between 20 and 40 nm. Up-conversion studies under 980 nm laser excitation showed that Er-doped phosphors present strong green emission related to H-2(11/2), S-4(3/2) --> I-4(15/2) Er transitions as well as the red ones, F-4(9/2) --> I-4(15/2). Tm-doped samples show strong blue emission assigned to (1)G(4) --> H-3(6) and also the red ones, related to (1)G(4) --> F-3(4). Therefore, the sulphuration method was successfully applied to prepare nanosized and nanostructured blue and green up-converter oxysulfide phosphors starting from basic carbonate and polymeric precursors. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The crystal nucleation rates of a metastable phase (chi) on the surface of a near stoichiometric cordierite glass were determined for temperatures between 839 and 910 degrees C (T-g similar to 800 degrees C). The surface nucleation kinetics of that phase on our glass, as well as on a stoichiometric glass (2 MgO-2Al(2)O(3)-5SiO(2)) studied by other authors, were analysed in terms of the classical nucleation theory; for the first time. It was shown that the effective interfacial energy for surface nucleation is substantially lower than that for homogeneous volume nucleation in silicate glasses, vindicating the assumption of heterogeneous nucleation on free glass surfaces. The average wetting angle between the nucleating crystals and the active solid particles was estimated to be around 46 degrees C. The pre-exponential constant was several orders of magnitude higher than the theoretical values as found for volume homogeneous nucleation in oxide glasses.
Resumo:
This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.
Resumo:
The Pechini method as well as the simultaneous addition of seeds particles and dopant solutions of BaTiO3 (BT) and PbTiO3 (PT) were used to prepare the perovskite phase 0.88 PZN-0.07 BT-0.05 PT. To study the influence of seed particle frequency on the synthesis of the PZN ceramic, two ranges of seed particle size were used: the range from 30 to 100 nm, termed small seed particles (frequency of 10(15) particles/cm(3)); and the range from 100 to 900 nm, termed large seed particles (frequency of 10(13) particles/cm(3)). The crystalline nuclei size influenced the calcining process, the sintering process and the microstructure. Samples prepared with lower seed frequency displayed more amount of pyroclore phase, need higher temperatures for sintering and showed a more heterogeneous microstructure with poor dielectric properties. (C) 2000 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.