15 resultados para Optical flow
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Optical flow methods are accurate algorithms for estimating the displacement and velocity fields of objects in a wide variety of applications, being their performance dependent on the configuration of a set of parameters. Since there is a lack of research that aims to automatically tune such parameters, in this work we have proposed an evolutionary-based framework for such task, thus introducing three techniques for such purpose: Particle Swarm Optimization, Harmony Search and Social-Spider Optimization. The proposed framework has been compared against with the well-known Large Displacement Optical Flow approach, obtaining the best results in three out eight image sequences provided by a public dataset. Additionally, the proposed framework can be used with any other optimization technique.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of the present study was to analyze the effects of looking at targets located at different distances on body oscillation during tasks of distinct difficulties. In Experiment 1, ten participants in quiet stance fixated targets in three conditions: No object-far (fixation on far-target without near-target), Object-near (fixation on near target with fartarget), and Object-far (fixation on far-target with near-target). Mean oscillations of trunk in anterior-posterior axis were smallest in the Object-near condition; the No object-far and Object-far conditions were similar. In Experiment 2, seven participants in kiba-dachi, a karate stance, were submitted to three conditions: Blindfolded, No object-far, and Object-near. Mean oscillations of head and trunk in anterior-posterior axis were smaller in the Object-near as compared to blindfolded condition; trunk oscillated more during No object-far than Object-near condition. The results support the notion that a simple posture is not automatically regulated by the optical flow, but different amounts of visual instability may be tolerated according to the fixation distance, regardless the presence of non-fixated objects; the control of a more difficult posture may also accommodate the effects of fixation distance.
Resumo:
Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]
Resumo:
Droplets formed at the tip of a tube under the same conditions possess extreme uniformity of form, volume and weight. These properties of liquid drop formation have been known for a long time and consequently many applications for the drop have been found in instrumentation and chemical analysis methods. In the present paper, we report on the analytical use of a dynamic LED-based flow-through optical absorption detector with optical path length controlled by continuous dropping of a solution. This arrangement consists of a flow cell built within a high-intensity red LED (lambda (max)=630 nm). The feasibility of the detector is demonstrated by colorimetric determination of methylene blue, and ammonium by Berthelot's reaction, in a flow-injection system. For ammonium, the reaction forms a blue dye (indophenol) with a maximum absorption at 630-650 nm. The detection limit, considered as 3 times the signal of the blank, is better than 125 mu g l(-1). The small flow cell represents a good combination of optical path length, low volume and fast washout. This detector can be used advantageously in automated methods and can represent a solution to problems of optical detection involving gas bubbles and precipitation of particles in turbidimetric applications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A significant part of film production by the coating industry is based on wet bench processes, where better understanding of their temporal dynamics could facilitate control and optimization. In this work, in situ laser interferometry is applied to study properties of flowing liquids and quantitatively monitor the dip coating batch process. Two oil standards Newtonian, non-volatile, with constant refractive indices and distinct flow properties - were measured under several withdrawing speeds. The dynamics of film physical thickness then depends on time as t(-1/2), and flow characterization becomes possible with high precision (linear slope uncertainty of +/-0.04%). Resulting kinematic viscosities for OP60 and OP400 are 1,17 +/- 0,03. St and 9,9 +/- 0,2 St, respectively. These results agree with nominal values, as provided by the manufacturer. For more complex films (a multi-component sol-gel Zirconyl Chloride aqueous solution) with a varying refractive index, through a direct polarimetric measurement, allowing also determination of the temporal evolution of physical thickness (uncertainty of +/- 0,007 microns) is also determined during dip coating.
Resumo:
The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(Ill) (after on-line solid-liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid-liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to online pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 mu g L-1 were obtained for total Sb and Sb (III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 19 and I I I 15% when 120 s of sample loading were used. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The use of Saccharomyces cerevisiae as a sorbent material to separate Cd(II) and Cd-metallothionein complex (Cd-MT) has been explored. Solid-liquid phase extractions were carried out in batch mode and the main parameters of the process (pH, temperature, time of incubation, amount of biomass and analyte) were evaluated. Under optimized conditions, the yeast quantitatively retain (94 +/- 5%) the Cd(II) while 97 +/- 2% of the Cd-MT remain in the supernatant. on base of the findings of this study, a simple method is proposed to determine Cd(II) and Cd-MT in cytosols extracted from mouse kidney and crab hepatopancreas. Inductively coupled plasma optical emission spectrometry was used to quantify the analytes in solid and liquid phase. Determination of Cd in the solid phase was carried out by introducing a slurry of the yeast (0.0625 g/10 mL) directly to the inductively coupled plasma optical emission spectrometer. Mixed standards solutions, which also have been submitted to the extraction procedure, were used to quantify the analytes in the samples. Thus, matrix effects due to nebulization of the slurry were overcame. Limits of detection (3 sigma) for Cd(II) and Cd-MT were 1.5 and 1.2 mu g L-1, respectively. Relative standard deviations of signals were 4.2% for measurements in the slurry of solid phase and 2.1% for measurements in the liquid phase. Recoveries of the analytes in cytosol samples were between 76 and 114%. The concentrations of Cd(II) (2.4 +/- 0.5 mu g L-1) and Cd-MT (3.0 +/- 0.5 mu g L-1) found by using the proposed approach were close to those found by tangential-flow ultrafiltration technique (2.6 +/- 0.7 mu g L-1 for Cd(II) and 3.7 +/- 1.7 mu g L-1 for Cd-MT).
Resumo:
The brown alga Pilayella littoralis was used as a new biosorbent in an on-line metal preconcentration procedure in a flow-injection system. Al, Co, Cu and Fe were determined in lake water samples by inductively coupled plasma optical emission spectrometry (ICP-OES) after preconcentration in a silica-immobilized alga column. Like other algae, P. littoralis exhibited strong affinity for these metals proving to be an effective accumulation medium. Metals were bound at pH 5.5 and were displaced at pH < 2 with diluted HCl. The enrichment factors for Cu-II, Fe-III, Al-III and Co-II were 13, 7, 16 and 11, respectively. Metal sorption efficiency ranged from 86 to 90%. The method accuracy was assessed by using drinking water certified reference material and graphite furnace atomic absorption spectrometry (GFAAS) as a comparison technique. The column procedure allowed a less time consuming, easy regeneration of the biomaterial and rigidity of the alga provided by its immobilization on silica gel. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A brief overview of optical monitoring for vacuum and wet bench film deposition processes is presented. Interferometric and polarimetric measurements are combined with regard to simultaneous real-time monitoring of refractive index and physical thickness. Monitor stability and accuracy are verified with transparent oil standards. This double optical technique is applied to dip coating with a multi-component Zirconyl Chloride aqueous solution, whose time varying refractive index and physical thickness curves indicate significant sensitivity to changes of film flow properties during the process.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)