71 resultados para OLEIC-ACID

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zein films plasticized with oleic acid were formed by solution casting, by the stretching of moldable resins, and by blown film extrusion. The effects of the forming process on film structure were investigated by X-ray diffraction. Wide-angle X-ray scattering (WAXS) patterns showed d-spacings at 4.5 and 10 angstrom, which were attributed to the zein alpha-helix backbone and inter-helix packing, respectively. The 4.5.angstrom d-spacing remained stable under processing while the 10 angstrom d-spacing varied with processing treatment. Small-angle X-ray scattering (SAXS) detected a long-range periodicity for the formed films but not for unprocessed zein, which suggests that the forming process-promoted film structure development is possibly aided by oleic acid. The SAXS d-spacing varied among the samples (130-238 angstrom) according to zein origin and film-forming method. X-ray scattering data suggest that the zein molecular structure resists processing but the zein supramolecular arrangements in the formed films are dependent on processing methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was performed in order to determine the effect of the addition of different concentrations of glycerol and ethanol over functional and structural properties of zein-oleic acid films. Films were prepared from zein and oleic acid formulations, containing: 0, 10, 20 and 30% (w/w) of glycerol as plasticizer and 75, 80, 85, 90 and 95% (v/v) of ethanol as zein solvent. Water vapor permeability (WVP) at 4 and 24 C, opacity, water solubility and structural behavior of the film were assessed. The film water barrier properties, WVP and water solubility, were increased when higher ethanol concentration and lower glycerol concentration were used. Furthermore, WVP at 4 C was lower than WVP at 24 C due to the crystalline solid state of oleic acid at lower temperatures. Likewise, opacity, homogeneity and structure of the composite film were improved as ethanol increased and glycerol lowered. © 2013 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study examines the effect of four semi-purified diets (casein-gelatin based) where the source of fatty acids was free (esterified) oleic acid and linoleic acid (LA) (LOA diet), linseed and olive oil (predominantly LA and linolenic acid) (LO diet), cod liver oil (rich in highly unsaturated fatty acids) (CLO diet), and soybean lecithin (phospholipids; mostly LA) (LE diet) on the growth of juvenile South American catfish (surubim, Pseudoplatystoma fasciatum, Pimelodidae) (0.98 +/- 0.04 g individual weight). Fish were fed at a restricted-readjusted feeding rate for 8 wk. At the end of the experiment, LE-diet-fed fish grew significantly larger than those of the other three groups (P < 0.05). Considerable cannibalism was observed in all the treatments. It is suggested that the quantitative growth performance may possibly change under other conditions, with less or no cannibalism. Survival did not differ significantly among the fish fed four different diets. Muscle and liver lipid contents did not vary among dietary treatments (P > 0.05), but whole-body lipid concentrations were affected by dietary treatments. Fish fed LE diet contained significantly lower lipid level than those fed three other diets (P < 0.05). Muscle and liver fatty acid profiles reflected dietary fatty acid composition. Arachidonic acid level was significantly higher in muscle and liver of fish fed LOA and LE diets than in those fed LO and CLO diets. The results suggest that the efficiency of elongation and desaturation of 18C fatty acids depends on the dietary lipid source, and South American catfish has considerable capacity to transform linoleate to arachidonate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To determine whether the fatty acid composition of mid-trimester amniotic fluid differs by ethnicity and pregnancy outcome. Methods: Fatty acid composition was analyzed by gas chromatography in 198 women undergoing amniocentesis at 15-19 weeks gestation. Cytokine levels were determined by ELISA in a subgroup of 52 subjects. Results: The major fatty acids detected were palmitic acid (31.8%) and stearic acid (31.5%). The n-6 polyunsaturated fatty acids (PUFA), linoleic acid (LA, 18: 2) and arachidonic acid (AA, 20: 4), were 11.3%, while the n-3 PUFA fatty acids, alpha linolenic acid (ALA, 18: 3) and docosahexaenoic acid (DHA, 22: 6), were 3.8% of the total. Palmitic acid was a higher percentage in Asians (40.5%) and Whites (34.5%) than in Blacks (22.2%) and Hispanics (23.7%) (p <= 0.0012). Oleic acid (18:1 n-9) was a higher percentage in Blacks (12.2%) and Hispanics (12.1%) than in Whites (9.2%) or Asians (7.5%) (<= 0.0002). LA and AA were higher in Blacks (9.0%, 5.4%) and Hispanics (8.6%, 4.1%) than in Whites (6.1%, 3.7%) and Asians (5.5%, 2.9%) (p <= 0.0002). DHA did not differ among the ethnic groups or according to pregnancy outcome. A reduced palmitic acid percentage was identified in the six women with preeclampsia (p = 0.0233). Tumor necrosis factor-alpha levels were inversely proportional to the palmitic acid percentage (p = 0.0275) and positively associated with the percentages of stearic (18:0) (p = 0.0132) and oleic (p = 0.0290) acids. Conclusions: Amniotic fluid fatty acid composition differed among the ethnic groups and may influence inflammatory mediator production and susceptibility to preeclampsia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this work was to evaluate the chemical composition and fatty acid contents of Amazonian and giant river prawns. After four-month farming, with the same diet for both species, palmitic and stearic acids were the main saturated fatty acids. Oleic acid was the main monounsatured fatty acid, and the eicosapentaenoic and docosahexaenoic acids were the most abundant polyunsaturated acids. Amazonian prawn has higher levels of protein and polyunsaturated fatty acids than those of the giant river prawn, which shows its potential for aquaculture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellulose was extracted from lignocellulosic fibers and nanocrystalline cellulose (NC) prepared by alkali treatment of the fiber, steam explosion of the mercerized fiber, bleaching of the steam exploded fiber and finally acid treatment by 5% oxalic acid followed again by steam explosion. The average length and diameter of the NC were between 200-250 nm and 4-5 nm, respectively, in a monodisperse distribution. Different concentrations of the NC (0.1, 0.5, 1.0, 1.5, 2.0 and 2.5% by weight) were dispersed non-covalently into a completely bio-based thermoplastic polyurethane (TPU) derived entirely from oleic acid. The physical properties of the TPU nanocomposites were assessed by Fourier Transform Infra-Red spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Dynamic Mechanical Analysis (DMA) and Mechanical Properties Analysis. The nanocomposites demonstrated enhanced stress and elongation at break and improved thermal stability compared to the neat TPU. The best results were obtained with 0.5% of NC in the TPU. The elongation at break of this sample was improved from 178% to 269% and its stress at break from 29.3 to 40.5 MPa. In this and all other samples the glass transition temperature, melting temperature and crystallization behavior were essentially unaffected. This finding suggests a potential method of increasing the strength and the elongation at break of typically brittle and weak lipid-based TPUs without alteration of the other physico-chemical properties of the polymer. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Bioactive compounds are capable of providing health benefits, reducing disease incidence or favoring body functioning. There is a growing search for vegetable oils containing such compounds. This study aimed to characterize the pulp and kernel oils of the Brazilian palm species guariroba (Syagrus oleracea), jeriva (Syagrus romanzoffiana) and macauba (Acrocomia aculeata), aiming at possible uses in several industries.RESULTS: Fatty acid composition, phenolic and carotenoid contents, tocopherol composition were evaluated. The majority of the fatty acids in pulps were oleic and linoleic; macauba pulp contained 526 g kg(-1) of oleic acid. Lauric acid was detected in the kernels of all three species as the major saturated fatty acid, in amounts ranging from 325.8 to 424.3 g kg(-1). The jeriva pulp contained carotenoids and tocopherols on average of 1219 mu g g(-1) and 323.50 mg kg(-1), respectively.CONCLUSION: The pulps contained more unsaturated fatty acids than the kernels, mainly oleic and linoleic. Moreover, the pulps showed higher carotenoid and tocopherol contents. The kernels showed a predominance of saturated fatty acids, especially lauric acid. The fatty acid profiles of the kernels suggest that these oils may be better suited for the cosmetic and pharmaceutical industries than for use in foods. (C) 2011 Society of Chemical Industry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three Latin American oilseeds obtained from native fruits: nopal (tuna) (Opuntia ficus-indica), cherimoya (chirimoya) (Annona cherimola), and papaya, Chilean variety (Carica pubescens or C. candamarcensis) were studied for their fatty acid composition and bioactive compounds, such as tocols and phytosterols, looking for new sources of special oilseeds for this region. The results indicated that each species represents an interesting possibility. Nopal oilseed is a good source of linoleic acid (62%), with a good balance between SFA and MUFA (1: 1.3). Cherimoya oilseed presents quite a different composition, with 24% SFA, 43% MUFA and 33% PUFA. Palmitic and stearic acids (15% and 7.6%, respectively) are the main SFA. A good balance between oleic acid (42.7%) and linoleic acid (31%) was observed. Papaya oilseed is a highly MUFA oil (72% with 71% oleic acid), with a very interesting composition, according to the new nutritional and technological recommendations.With respect to bioactive compounds, the main tocol in these three oilseeds was gamma-tocopherol, with 136, 300 and 317 mg/kg for cherimoya, papaya and nopal oilseeds, respectively. According to the total tocol content, papaya oilseed presented the highest value with 384 mg/kg. The total amount and distribution of phytosterols was different, with values of 3092, 3554 and 5474 mg/kg for nopal, cherimoya and papaya oilseeds, respectively, with beta-sitosterol forming 47.6%, 65.0 % and 78.7% of the total phytosterol fractions, respectively. From the results obtained, Chilean papaya oilseed can be considered as a very promising new source of special plant oil for different applications, followed by cherimoya and nopal oilseeds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, carbon-supported Pt70Co30 nanoparticles were prepared by a polyol process using a long-chain diol as reducer (hexadecanediol) and oleic acid and oleylamine as stabilizers. Depending on the synthesis conditions, Pt70Co30/C nanocatalysts with very small particle size (1.9 +/- 0.2 nm) and narrow distribution homogeneously dispersed on the carbon support and having a high degree of alloying without the need of thermal treatments were obtained. The as-prepared catalyst presents an excellent performance as proton exchange membrane fuel cells (PEMFC) cathode material. In terms of mass activity (MA), the Pt70Co30/C electrocatalysts produced single fuel cell polarization response superior to that of commercial catalyst. To analyze alloying effects, the result of thermal treatment at low temperatures (200-400 degrees C) was also evaluated and an increase of average crystallite size and a lower degree of alloying, probably associated to cobalt oxidation, were evidenced.