7 resultados para Nonresonant
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A class of shape-invariant bound-state problems which represent transitions in a two-level system introduced earlier are generalized to include arbitrary energy splittings between the two levels as well as intensity-dependent interactions. We show that the coupled-channel Hamiltonians obtained correspond to the generalizations of the nonresonant and intensity-dependent Jaynes-Cummings Hamiltonians, widely used in quantized theories of lasers. In this general context, we determine the eigenstates, eigenvalues, the time evolution matrix and the population inversion matrix factor.
Resumo:
We report measurements of the nonresonant nonlinear refractive index n(2) in antimony glasses at telecom wavelengths. The measurements were performed using the Z-scan technique with a 130 fs pulsed laser operating at five wavelengths in the range of 1400-1600 nm. Values of n(2)approximate to 10(-15) cm(2)/W were measured and a negligible two-photon absorption coefficient (< 0.003 cm/GW) was estimated for all glasses compositions. The samples present a good figure of merit for ultrafast all-optical switching. (c) 2006 American Institute of Physics.
Resumo:
nonlinear (NL) refractive index, n(2), of NaPO3-WO3-Bi2O3 glass with different relative amounts of the constituents was measured at 1064 and 800 nm using the Z-scan and the thermally managed eclipse Z-scan techniques, respectively. The values of n(2) >= 10(-15) cm(2)/W and negligible NL absorption coefficient were determined. The large values of the NL refractive index and the very small NL absorption indicate that these materials have large potential for all-optical switching applications. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3212972]
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents an efficiency investigation of an isolated high step-up ratio dc-dc converter aimed to be used for energy processing from low-voltage high-current energy sources, like batteries, photovoltaic modules or fuel-cells. The considered converter consists of an interleaved active clamp flyback topology combined with a voltage multiplier at the transformer secondary side capable of two different operating modes, i.e. resonant and non-resonant according to the design of the output capacitors. The main goal of this paper is to compare these two operating modes from the component losses point of view with the aim of maximize the overall converter efficiency. The approach is based on losses prediction using steady-state theoretical models (designed in Mathcad environment), taking into account both conduction and switching losses. The models are compared with steady-state simulations and experimental results considering different operating modes to validate the approach. © 2012 IEEE.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)