35 resultados para Monocarboxylate transporters

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Soft tissue sarcomas (STSs) are a group of neoplasms, which, despite current therapeutic advances, still confer a poor outcome to half of the patients. As other solid tumors, STSs exhibit high glucose consumption rates, associated with worse prognosis and therapeutic response. As highly glycolytic tumors, we hypothesized that sarcomas should present an increased expression of lactate transporters (MCTs).Methods: Immunohistochemical expression of MCT1, MCT2, MCT4 and CD147 was assessed in a series of 86 STSs and the expression profiles were associated with patients' clinical-pathological parameters.Results: MCT1, MCT4 and CD147 were mainly observed in the plasma membrane of cancer cells (around 60% for MCTs and 40% for CD147), while MCT2 was conspicuously found in the cytoplasm (94.2%). Importantly, we observed MCT1 nuclear expression (32.6%). MCT1 and MCT4, alone or co-expressed with CD147 in the plasma membrane, were associated with poor prognostic variables including high tumor grade, disease progression and shorter overall survival. Conversely, we found MCT1 nuclear expression to be associated with low grade tumors and longer overall survival.Conclusions: The present work represents the first report of MCTs characterization in STSs. We showed the original finding of MCT1 expression in the nucleus. Importantly, opposite biological roles should be behind the dual sub-cellular localization of MCT1, as plasma membrane expression of MCT1 is associated with worse patients' prognosis, while nuclear expression is associated with better prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To examine the evolution of endurance-exercise behaviour, we have selectively bred four replicate lines of laboratory mice (Mus domesticus) for high voluntary wheel running ('high runner' or HR lines), while also maintaining four non-selected control (C) lines. By generation 16, HR mice ran ∼2.7-fold more than C mice, mainly by running faster (especially in females), a differential maintained through subsequent generations, suggesting an evolutionary limit of unknown origin. We hypothesized that HR mice would have higher glycogen levels before nightly running, show greater depletion of those depots during their more intense wheel running, and have increased glycogen synthase activity and GLUT-4 protein in skeletal muscle. We sampled females from generation 35 at three times (photophase 07:00 h-19:00 h) during days 5-6 of wheel access, as in the routine selection protocol: Group 1, day 5, 16:00 h-17:30 h, wheels blocked from 13:00 h; Group 2, day 6, 02:00 h-03:30 h (immediately after peak running); and Group 3, day 6, 07:00 h-08:30 h. An additional Group 4, sampled 16:00 h-17:30 h, never had wheels. HR individuals with the mini-muscle phenotype (50% reduced hindlimb muscle mass) were distinguished for statistical analyses comparing C, HR normal, and HR mini. HR mini ran more than HR normal, and at higher speeds, which might explain why they have been favored by the selective-breeding protocol. Plasma glucose was higher in Group 1 than in Group 4, indicating a training effect (phenotypic plasticity). Without wheels, no differences in gastrocnemius GLUT-4 were observed. After 5 days with wheels, all mice showed elevated GLUT-4, but HR normal and mini were 2.5-fold higher than C. At all times and irrespective of wheel access, HR mini showed approximately three-fold higher [glycogen] in gastrocnemius and altered glycogen synthase activity. HR mini also showed elevated glycogen in soleus when sampled during peak running. All mice showed some glycogen depletion during nightly wheel running, in muscles and/or liver, but the magnitude of this depletion was not large and hence does not seem to be limiting to the evolution of even-higher wheel running.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intrauterine dietary restriction may cause changes in the functioning of offspring organs and systems later in life, an effect known as fetal programming. The present study evaluated mRNA abundance and immunolocalization of nutrient transporters as well as enterocytes proliferation in the proximal, median and distal segments of small intestine of rats born to protein-restricted dams. Pregnant rats were fed hypoproteic (6% protein) or control (17% protein) diets, and offspring rats were evaluated at 3 and 16 weeks of age. The presence of SGLT1 (sodium-glucose co-transporter 1), GLUT2 (glucose transporter 2), PEPT1 (peptide transporter 1) and the intestinal proliferation were evaluated by immunohistochemical techniques and the abundance of specific mRNA for SGLT1, GLUT2 and PEPT1 was assessed by the real-time PCR technique. Rats born to protein-restricted dams showed higher cell proliferation in all intestinal segments and higher gene expression of SGLT1 and PEPT1 in the duodenum. Moreover, in adult animals born to protein-restricted dams the immunoreactivity of SGLT1, GLUT2 and PEPT1in the duodenum was more intense than in control rats. Taken together, the results indicate that changes in the small intestine observed in adulthood can be programmed during the gestation. In addition, they show that this response is caused by both up-regulation in transporter gene expression, a specific adaptation mechanism, and intestinal proliferation, an unspecific adaptation mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xylella fastidiosa 9a5c (XF-9a5c) and Xanthomonas axonopodis pv. citri (XAC) are bacteria that infect citrus plants. Sequencing of the genomes of these strains is complete and comparative analyses are now under way with the genomes of other bacteria of the same genera. In this review, we present an overview of this comparative genomic work. We also present a detailed genomic comparison between XF-9a5a and XAC. Based on this analysis, genes and operons were identified that might be relevant for adaptation to citrus. XAC has two copies of a type II secretion system, a large number of cell wall-degrading enzymes and sugar transporters, a complete energy metabolism, a whole set of avirulence genes associated with a type III secretion system, and a complete flagellar and chemotatic system. By contrast, XF-9a5c possesses more genes involved with type IV pili biosynthesis than does XAC, contains genes encoding for production of colicins, and has 4 copies of Type I restriction/modification system while XAC has only one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis is a thermally dimorphic fungus, and causes the most prevalent systemic mycosis in Latin America. Infection is initiated by inhalation of conidia or mycelial fragments by the host, followed by further differentiation into the yeast form. Information regarding gene expression by either form has rarely been addressed with respect to multiple time points of growth in culture. Here, we report on the construction of a genomic DNA microarray, covering approximately 25% of the genome of the organism, and its utilization in identifying genes and gene expression patterns during growth in vitro. Cloned, amplified inserts from randomly sheared genomic DNA (gDNA) and known control genes were printed onto glass slides to generate a microarray of over 12 000 elements. To examine gene expression, mRNA was extracted and amplified from mycelial or yeast cultures grown in semi-defined medium for 5, 8 and 14 days. Principal components analysis and hierarchical clustering indicated that yeast gene expression profiles differed greatly from those of mycelia, especially at earlier time points, and that mycelial gene expression changed less than gene expression in yeasts over time. Genes upregulated in yeasts were found to encode proteins shown to be involved in methionine/cysteine metabolism, respiratory and metabolic processes (of sugars, amino acids, proteins and lipids), transporters (small peptides, sugars, ions and toxins), regulatory proteins and transcription factors. Mycelial genes involved in processes such as cell division, protein catabolism, nucleotide biosynthesis and toxin and sugar transport showed differential expression. Sequenced clones were compared with Histoplasma capsulatum and Coccidioides posadasii genome sequences to assess potentially common pathways across species, such as sulfur and lipid metabolism, amino acid transporters, transcription factors and genes possibly related to virulence. We also analysed gene expression with time in culture and found that while transposable elements and components of respiratory pathways tended to increase in expression with time, genes encoding ribosomal structural proteins and protein catabolism tended to sharply decrease in expression over time, particularly in yeast. These findings expand our knowledge of the different morphological forms of P. brasiliensis during growth in culture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Red blood cells (RBCs) from most vertebrates restore volume upon hypertonic shrinkage and the mechanisms underlying this regulatory volume increase (RVI) have been studied extensively in these cells. Despite the phylogenetically interesting position of reptiles, very little is known about their red cell function. The present study demonstrates that oxygenated RBCs in all major groups of reptiles exhibit no or a very reduced RVI upon -25% calculated hyperosmotic shrinkage. Thus, RBCs from the snakes Crotalus durissus and Python regius, the turtle Trachemys scripta and the alligator Alligator mississippiensis showed no statistically significant RVI within 120 min after shrinkage, while the lizard Tupinambis merianae showed 22% volume recovery after 120 min. Amiloride (10(-4) M) and bumetanide (10(-5) M) had no effect on the RVI in T merianae, indicating no involvement of the Na(+)/H(+) exchanger (NHE) or the Na(+)/K(+)/2Cl(-) co-transporter (NKCC) or insentive transporters. Deoxygenation of RBCs from A. mississippiensis and T merianae did not significantly affect RVI upon shrinkage. Deoxygenation per se of red blood cells from T merianae elicited a slow volume increase, but the mechanism was not characterized. It seems, therefore, that the RVI response based on NHE activation was lost among the early sauropsids that gave rise to modern reptiles and birds, while it was retained in mammals. An RVI response has then reappeared in birds, but based on activation of the NKCC. Alternatively, the absence of the RVI response may represent the most ancient condition, and could have evolved several times within vertebrates. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A regulação da homeostasia intra e extra-celular da glicose está diretamente relacionada ao controle preciso da expressão dos genes que codificam as diferentes isoformas de proteínas transportadoras de glicose, as quais se expressam de maneira tecido-específica, em conseqüência do padrão de ativação dos fatores transcricionais reguladores de cada gene, em cada tipo celular. A síndrome metabólica (SM) abrange uma grande variedade de alterações fisiopatológicas, todas de repercussões sistêmicas, acometendo os mais distintos territórios do organismo, nos quais alterações nos transportadores de glicose presentes são observadas em maior ou menor grau. A presente revisão abordará as alterações na expressão de transportadores de glicose claramente demonstradas na literatura, cujas repercussões nos fluxos territoriais de glicose auxiliam na compreensão de mecanismos fisiopatológicos da SM, assim como dos tratamentos propostos para esta entidade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To identify genes specifically or predominantly expressed in the stigmas/styles and to establish their possible function in the reproductive process of plants, a tobacco stigma/style cDNA library was constructed and differentially screened, resulting in the isolation of several cDNA clones. The molecular characterization of one of these clones is described here. After sequencing the cDNA and the isolated genomic clone, it was determined that the corresponding gene encodes a protein containing an ATP-binding cassette, characteristic of ABC transporters. This gene, designated as NtWBC1 (Nicotiana tabacum ABC transporter of the White-Brown Complex subfamily), encodes a protein that contains the typical structure of the 'half-transporters' of the White subfamily. To establish the spatial expression pattern of the NtWBC1 gene, northern blot and real-time RT-PCR analyses with total RNA from roots, stems, leaves, sepals, petals, stamens, stigmas/styles, ovaries, and seeds were performed. The result revealed a transcript of 2.5 kb present at high levels in stigmas and styles and a smaller transcript (2.3 kb) present at a lower level in stamens. NtWBC1 expression is developmentally regulated in stigmas/styles, with mRNA accumulation increasing toward anthesis. In situ hybridization experiments demonstrated that NtWBC1 is expressed in the stigmatic secretory zone and in anthers, at the stomium region and at the vascular bundle. NtWBC1 is the first ABC transporter gene with specific expression in plant reproductive organs to be identified and its expression pattern suggests important role(s) in the reproductive process.