27 resultados para Materials degradation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Abstract: In the past few years, tribocorrosion has become a focus of research because of its relevance in terms of the future in-service degradation mechanisms of materials. In the particular case of decorative coatings, tribocorrosion is certainly one of the most important issues, and sweat corrosion and human contact wear are two other factors that may act as material selection tools. Thus, the current study aimed to investigate the tribocorrosion behavior of a new class of thin films, the Ti-C-O-N system, which is being developed to be used as a surface decorative material due to its relatively dark appearance. The films were prepared by reactive magnetron sputtering. The influence of the structural features on the tribocorrosion behavior is discussed. Crown Copyright © 2013.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives. The aim of this study was to evaluate the cytotoxic effect of the monomers isobutyl methacrylate (IBMA) and 1,6-hexanediol dimethacrylate (1,6-HDMA), the plasticizer di-n-butyl phthalate (DBP), and the degradation by-products methacrylic acid (MA) and benzoic acid (BA) on L929 cells. Based on previous investigations on the release of these compounds from hard chairside reline resins, a range of concentrations (mu mol/L) were selected for the cytotoxicity tests (IBMA, 5.491406.57; 1,6-HDMA, 1.2239.32; DBP, 1.12143.8; MA, 9.07581; BA, 3.19409).Methods. Cytotoxic effects were assessed using MTT and 3H-thymidine assays after the cells had been exposed to the test compounds at the given concentrations for 24h. Cytotoxicity was rated based on cell viability relative to controls (cells exposed to medium without test substances).Results. DNA synthesis activity was inhibited by all compounds. Mitochondrial dehydrogenase activity decreased in cells treated with monomers, plasticizer and MA by-product, whereas no cytotoxic effect was observed on contact with BA at the majority of concentrations tested. The ranges of suppression for 3H-thymidine assay were: IBMA, 2595%; 1,6-HDMA, 9598%; DBP, 4098%; MA, 9799%; BA, 5471%. For MTT assay, the ranges of suppression were: IBMA, 096%; 1,6-HDMA, 2689%; DBP, 1780%; MA, 5266%; BA, 027%. The 3H-thymidine assay was more sensitive than the MTT assay.Significance. This study evaluated the cytotoxicity of a wide range of concentrations of monomers (IBMA and 1,6-HDMA), plasticizer (DBP) and degradation by-products (MA and BA), including those expected to be released from hard chairside reline resins. The differences observed in the cytotoxicity of these compounds, along with other properties, may assist the dental practitioners in the selection of reline materials with improved service life performance and low risk of adverse reactions in patients who wear relined dentures.
Resumo:
Objective: This study evaluated the surface degradation effect of acidulated phosphate fluoride (APF) gel exposure on the glassy matrix ceramics as a function of time. Material and methods: Disc-shaped ceramic specimens (N = 120, 10/per ceramic material) were prepared in stainless steel molds (inner diameter: 5 mm, height: 2 mm) using 6 dental ceramics: 3 indicated for ceramic-fused-to-metal (Vita Omega 900, Carmen and Vita Titankeramik), 2 for all-ceramic (Vitadur Alpha and Finesse (R) Low Fusing) and 1 for both types of restorations (IPS d. SIGN). The specimens were wet ground finished, ultrasonically cleaned and auto-glazed. All specimens were subjected to calculation of percentage of mass loss, surface roughness analysis and topographical description by scanning electron microscopy (SEM) before (0 min) and after exposure to 1.23 % APF gel for 4 min and 60 min representing short-and long-term etching effect, respectively. The data were analyzed using two-way ANOVA with repeated measures and Tukey` s test (alpha=0.05). Results: Significant effect of the type of the ceramics (p=0.0000, p=0.0031) and exposure time (p=0.0000) was observed in both surface roughness and percentage of mass loss values, respectively. The interaction factor between both parameters was also significant for both parameters (p=0.0904, p=0.0258). Both 4 min (0.44 +/- 0.1-0.81 +/- 0.2 mu m) and 60 min (0.66 +/- 0.1 - 1.04 +/- 0.3 mu m) APF gel exposure created significantly more surface roughness for all groups when compared to the control groups (0.33 +/- 0.2-0.68 +/- 0.2 mu m) (p<0.05). There were no significant differences in percentage of mass loss between the ceramics at 4 min (p>0.05) but at 60 min exposure, IPS d. SIGN showed the highest percentage of mass loss (0.1151 +/- 0.11). The mean surface roughness for Vita Titankeramik (0.84 +/- 0.2 mu m) and Finesse (R) Low Fusing (0.74.+/- 0.2 mu m) was significantly higher than those of the other ceramics (0.59 +/- 0.1 mu m - 0.49 +/- 0.1 mu m) and Vita Titankeramik (p<0.05) regardless of the exposure time. A positive correlation was found between surface roughness and percentage of mass loss for all ceramic materials [(r=0.518 (Vitadur Alpha), r=0.405 (Vita Omega 900), r=0.580 (Carmen), r=0.687 (IPS d. SIGN), r=0.442 (Finesse (R) Low Fusing), r=0.572 (Vita Titankeramik), Pearson's correlation coefficient)]. The qualitative SEM analysis showed evidence of corrosive attack on all of ceramics at varying degrees. Conclusions: The ceramics indicated for either metal-ceramic or all-ceramic restorations were all vulnerable to surface texture changes and mass loss after short-term and long-term APF gel exposure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study reports the photodegradation of 4-chlorophenol (4-CP) in aqueous solution by the photo-Fenton process using solar irradiation. The influence of solution path length, and Fe(NO3)(3) and H2O2 concentrations on the degradation of 4-CP is evaluated by response surface methodology. The degradation process was monitored by the removal of total organic carbon (TOC) and the release of chloride ion. The results showed a very important role of iron concentration either for TOC removal or dechlorination. on the other hand, a negative effect of increasing solution path length on mineralization was observed, which can be compensated by increasing the iron concentration. This permits an adjustment of the iron concentration according to the irradiation exposure area and path length (depth of a tank reactor). Under optimum conditions of 1.5 mM Fe(NO3)(3), 20.0 mM H2O2 and 4.5 cm solution path length, 17 min irradiation under solar light were sufficient to reduce a 72 mg C L-1 solution of 4-CP by 91 (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The oxidative and thermo-mechanical degradation of HDPE was studied during processing in an internal mixer under two conditions: totally and partially filled chambers, which provides lower and higher concentrations of oxygen, respectively. Two types of HDPEs, Phillips and Ziegler-Natta, having different levels of terminal vinyl unsaturations were analyzed. Materials were processed at 160, 200, and 240 degrees C. Standard rheograrns using a partially filled chamber showed that the torque is much more unstable in comparison to a totally filled chamber which provides an environment depleted of oxygen. Carbonyl and transvinylene group concentrations increased, whereas vinyl group concentration decreased with temperature and oxygen availability. Average number of chain scission and branching (n(s)) was calculated from MWD curves and its plotting versus functional groups' concentration showed that chain scission or branching takes place depending upon oxygen content and vinyl groups' consumption. Chain scission and branching distribution function (CSBDF) values showed that longer chains undergo chain scission easier than shorter ones due to their higher probability of entanglements. This yields macroradicals that react with the vinyl terminal unsaturations of other chains producing chain branching. Shorter chains are more mobile, not suffering scission but instead are used for grafting the macroradicals, increasing the molecular weight. Increase in the oxygen concentration, temperature, and vinyl end groups' content facilitates the thermo-mechanical degradation reducing the amount of both, longer chains via chain scission and shorter chains via chain branching, narrowing the polydispersity. Phillips HDPE produces a higher level of chain branching than the Ziegler-Natta's type at the same processing condition. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The electrical degradation phenomena of zinc oxide-based varistors were studied using a high-energy current pulse and a.c. polarization at different temperatures. Activation energy measurements during the degradation process showed that these phenomena are associated with diffusion and that the diffusion-controlling species are slower than Zn., For degradation promoted by current pulses of 8×20 μs, the Schottky potential barrier deformation was measured. A decrease in height and width of the potential barrier due to the reduction of surface states density, N s, without a significant change in donor density, N d, was observed. To explain these results, a modification of the unstable components model is proposed for the potential barrier in which the degradation is due to oxi-reduction reactions between atomic defects. These reactions promote the elimination of zinc vacancies and/or adsorbed oxygen on the grain boundaries. © 1992 Chapman & Hall.
Resumo:
This study determined if dentin proteases are denatured by phosphoric acid (PA) used in etch-and-rinse dentin adhesives. Dentin beams were completely demineralized with EDTA for 30 days. We acid-etched experimental groups by exposing the demineralized dentin beams to 1, 10, or 37 mass% PA for 15 sec or 15 min. Control beams were not exposed to PA but were incubated in simulated body fluid for 3 days to assay their total endogenous telopeptidase activity, by their ability to solubilize C-terminal crosslinked telopeptides ICTP and CTX from insoluble dentin collagen. Control beams released 6.1 ± 0.8 ng ICTP and 0.6 ± 0.1 ng CTX/mg dry-wt/3 days. Positive control beams pre-incubated in p-aminophenylmercuric acetate, a compound known to activate proMMPs, released about the same amount of ICTP peptides, but released significantly less CTX. Beams immersed in 1, 10, or 37 mass% PA for 15 sec or 15 min released amounts of ICTP and CTX similar to that released by the controls (p > 0.05). Beams incubated in galardin, an MMP inhibitor, or E-64, a cathepsin inhibitor, blocked most of the release of ICTP and CTX, respectively. It is concluded that PA does not denature endogenous MMP and cathepsin activities of dentin matrices. © 2013 International & American Associations for Dental Research.
Resumo:
Currently, there is worldwide interest in the technological use of agro-industrial residues as a renewable source of food and biofuels. Lignocellulosic materials (LCMs) are a rich source of cellulose and hemicellulose. Hemicellulose is rich in xylan, a polysaccharide used to develop technology for producing alcohol, xylose, xylitol and xylo-oligosaccharides (XOSs). The XOSs are unusual oligosaccharides whose main constituent is xylose linked by β 1-4 bonds. The XOS applications described in this paper highlight that they are considered soluble dietary fibers that have prebiotic activity, favoring the improvement of bowel functions and immune function and having antimicrobial and other health benefits. These effects open a new perspective on potential applications for animal production and human consumption. The raw materials that are rich in hemicellulose include sugar cane bagasse, corncobs, rice husks, olive pits, barley straw, tobacco stalk, cotton stalk, sunflower stalk and wheat straw. The XOS-yielding treatments that have been studied include acid hydrolysis, alkaline hydrolysis, auto-hydrolysis and enzymatic hydrolysis, but the breaking of bonds present in these compounds is relatively difficult and costly, thus limiting the production of XOS. To obviate this limitation, a thorough evaluation of the most convenient methods and the opportunities for innovation in this area is needed. Another challenge is the screening and taxonomy of microorganisms that produce the xylanolytic complex and enzymes and reaction mechanisms involved. Among the standing out microorganisms involved in lignocellulose degradation are Trichoderma harzianum, Cellulosimicrobium cellulans, Penicillium janczewskii, Penicillium echinulatu, Trichoderma reesei and Aspergillus awamori. The enzyme complex predominantly comprises endoxylanase and enzymes that remove hemicellulose side groups such as the acetyl group. The complex has low β-xylosidase activities because β-xylosidase stimulates the production of xylose instead of XOS; xylose, in turn, inhibits the enzymes that produce XOS. The enzymatic conversion of xylan in XOS is the preferred route for the food industries because of problems associated with chemical technologies (e.g., acid hydrolysis) due to the release of toxic and undesired products, such as furfural. The improvement of the bioprocess for XOS production and its benefits for several applications are discussed in this study. © 2012 Elsevier Ltd.
Resumo:
Much has been talking about the advantages of polymeric nanocomposites, but little is known about the influence of nanoparticles on the stability of these materials. In this sense, we studied the influence of both oxides of zirconium and titanium, known to have photocatalytic properties, as well as the influence of synthetic clay Laponite on the photodegradation of styrene-butadiene rubber (SBR). SBR nanocomposites were prepared by the colloidal route by mixing commercial polymer lattices and nanometric anatase TiO2, monoclinic ZrO2 or exfoliated Laponite clays colloidal suspensions. To better understand the degradation mechanisms that occur in these nanocomposites, the efficiency of different photocatalysts under ultraviolet radiation was monitored by FT-IR and UV-vis spectroscopies and by differential scanning calorimetric. It was observed that TiO2 and ZrO2 nanoparticles undoubtedly acted as catalysts during the photodegradation process with different efficiencies and rates. However, when compared to pure SBR samples, the polymer degradation mechanism was unaffected. Unlike studies with nanocomposites montmorillonite, exfoliated laponite clay effectively acts as a photostabilizer of polymer UV photodegradation. Copyright © 2012 Wiley Periodicals, Inc.
Resumo:
In this study, nanocomposites of PLA and organoclays Cloisite 20A and Cloisite 30B were prepared by the melt intercalation method and the obtained samples were characterized by transmission electron microscopy (TEM). Since composting is an important proposal to the final disposal of biopolymers, the influence of clays on the hydrolytic degradation process of PLA was evaluated by visual analysis and monitoring of molecular weight after periods of 15 and 30 days of degradation in compost. After degradation of the materials in composting environment, the evaluation of cytotoxic, genotoxic and mutagenic effects of compost aqueous extract was carried out using a bioassay with Allium cepa as test organism. The TEM micrographs permitted the observation of different levels of dispersion, including exfoliated regions. In the evaluation of hydrolytic degradation it was noted that the presence of organoclays can decrease the rate of degradation possibly due to the barrier effect of clay layers and/or the higher degree of crystallinity in the nanocomposite samples. Nevertheless, even in the case of nanocomposites, the molecular weight reduction was significant, indicating that the composting process is favorable to the chain scission of PLA in studied materials. In the analysis performed by the bioassay using A. cepa as test organism, it was found that after degradation of the PLA and its nanocomposites the aqueous extract of compost samples induced a decreasing in the mitotic index and an increasing in the induction of chromosomal abnormalities. These results were statistically significant in relation to the negative control (distilled water). By comparing the results obtained for the nanocomposites in relative to pure polymer, there were no statistically significant differences. The types of the observed chromosomal aberrations indicated a possible genotoxic effect of the materials, which may be related to an aneugenic action of PLA degradation products. © 2013 Springer Science+Business Media New York.
Resumo:
Rare earth complexes (RE) can be incorporated in silica matrixes, originating organic/inorganic hybrid materials with good thermal stability and high rare earth emission lines. In this work, the hybrid material was obtained by the polymeric precursor method and ultrasonic dispersed with spherical silica particles prepared by the Stöber Method. The Raman spectra indicated that the Eu3+ ions are involved in a polymeric structure formed as consequence of the chelation and polyesterification reactions of this ion with citric acid and ethylene glycol. After the ultrasonic stirring, 2-hydroxynicotinic ligand will also compose this polymeric rigid structure. The TGA/DTA analysis showed that this polymeric material was thermal decomposed at 300 °C. Moreover, this process allows the chelating process of the 2-hydroxynicotinic acid ligand to the Eu3+ ions. The 29Si NMR showed that the ultrasonic dispersion of the reactants was not able to promote the functionalization of the silica particles with the 2-hydroxynicotinic acid ligand. Moreover, heat treatment promotes the [Eu(HnicO2)3] complex particles incorporation into silica pores. At this temperature, the TGA curve showed that only the thermal degradation of ethylene glycol and citric acid used during the experimental procedure occurs. The silica and hybrid materials are composed by spherical and aggregated particles with particle size of approximately 450 nm, which can be influenced by the heat treatment. These materials also present an absorption band located at 337 nm. The photoluminescent study showed that when the hybrid samples were excited at 337 nm wavelength, the ligand absorbs the excitation light. Part of this energy is transferred to the Eu3+ ion, which main emission, 5D0→ 7F2, is observed in the emission spectrum at 612 nm. As the heating temperature increases to 300 C, the energy transfer is more favorable. The lifetime values showed that the Eu3+ emission is enhanced due to the energy transfer process in the powders. © 2013 Elsevier B.V. All rights reserved.