236 resultados para MERCURY DROP ELECTRODE
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A method was developed for the differential-pulse cathodic stripping voltammetric determination of ceftazidime with a hanging mercury drop electrode using its reduction peak at -0.43 V in Britton-Robinson buffer pH 4.0. The optimum accumulation potential and time were -0.15 V and up to 60 s, respectively. Linear calibration graphs were obtained from 1 x 10(-8) M and 1.5 x 10(-7) M. The limit of determination was calculated to be 5 x 10(-9) M. The coefficient of variation was 4% (n = 7) at 1 x 10(-7) M ceftazidime. The effect of various components of urine on the voltammetric response was studied, and creatinine, uric acid, urea, and glucose were shown to interfere in the method. Ceftazidime bound to human albumin gives a unique stripping peak at -0.48 V. Recoveries of 87% +/- 2% of the ceftazidime (n = 5) were obtained from urine spiked with 1.27 mu g ml(-1) using C-18 solid phase extraction cartridges. (C) 1997 Academic Press.
Resumo:
Procion red HE-3B (RR120) is an example of dye currently used in affinity purification. A method is described for determining trace amounts of RR120 dye contaminant in human serum albumin by cathodic stripping voltammetry. The method is based on a measure of a well-defined peak at -0.58 V, obtained when samples of HSA protein (0.01-2% w/v) containing dye concentrations are submitted to a heating time of 330 min at 80degreesC in NaOH, pH 12.0 and the samples are removed to a solution containing Britton-Robinson buffer, pH 4.0. Using an optimum accumulation potential and tune of 0 V and 240 s, respectively, linear calibration curves were obtained from 1.0 X 10(-9) to 1.0 X 10(-8) mol 1(-1) for RR120 dye. Leakage/hydrolysis of reactive red 120 from an agarose support (e.g. at pH 2 or 12) can also be conveniently determined at very low levels (sub-mug ml(-1)) by means of cathodic stripping voltammetry, which involves adsorptive accumulation of the dye onto the hanging mercury-drop electrode. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Ceftazidime is hydrolysed only slowly at pH 10 at room temperature. This is indicated by a small cathodic stripping voltammetric peak obtained at pH 10 at a hanging mercury drop electrode at about -0.6 V which corresponds to the reduction of the hydrolysis product. This peak is enhanced more than tenfold by the addition of poly-L-lysine (PLL) to the electrolyte solution. The optimum accumulation potential is between 0 and -0.1 V: the size of the peak decreases steadily, however, as the accumulation potential is moved to more negative potentials and is about one-sixth the size for accumulation at -0.4 V. Existing knowledge of the organic chemistry of cephalosporins indicates that the accumulation must involve an aminolysis reaction of the unprotonated PLL with the beta-lactam ring of the ceftazidime. The limit of detection (3 sigma) in standard solutions was calculated to be 1 x 10(-10) mol l(-1). The detection limit in buffer solution containing 1% of urine was calculated to be 5 x 10(-9) mol l(-1), i.e. 5 x 10(-6) mol l(-1) in the urine. (C) 1999 Elsevier B.V. B.V. AU rights reserved.
Resumo:
Cathodic stripping voltammetry (CSV) and accumulation at the hanging mercury drop electrode are reviewed briefly. Proposals in a recent IUPAC technical report are considered. Three recent developments in CSV are discussed: the adaptation of CSV methods developed for use with the hanging mercury drop electrode for use with screen-printed carbon electrodes in disposable sensors, the use of reactive accumulation, and the chemometric use of kinetic methods of determination with pulse methods in CSV.
Resumo:
A sensitive method based on square wave voltammetry is described for the quantitative determination of elemental sulfur, disulfide and mercaptan in gasoline using a mercury film electrode. These sulfur compounds can be quantified by direct dissolution of gasoline in a supporting electrolyte followed by subsequent voltammetric measurement. The supporting electrolyte is 1.4 mol L-1 sodium acetate and No acetic acid in methanol. Chemical and optimum operational conditions for the formation of the mercury film were analyzed in this study. The values obtained were a 4.3 mu m thickness for the mercury film, a 1000 rpm rotation frequency, -0.9 V applied potential and 600 s depositing time. Voltammetric measurements were obtained using square wave voltammetry with detection limits of the 3.0 x 10(-9), 1.6 x 10(-7) and 4.9 x 10(-7) mol L-1 for elemental sulfur, disulfide and mercaptan, respectively. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
At accumulation potentials close to +0.1 V at a hanging mercury drop electrode, ceftazidime is accumulated at pH 9.5, probably in a hydrolysed or otherwise chemically altered form, in an anodic process to give an adsorbed mercury salt. The accumulation of this mercury salt allows the indirect cathodic-stripping voltammetric determination of ceftazidime using the reduction peak of the mercury salt at -0.70 V. The high sensitivity of the method coupled with high sample dilution allows ceftazidime to be determined in milk samples at the 28 mu g ml(-1) level without prior separation. In order to determine lower levels of ceftazidime in milk (ca. 10 ng ml(-1)) a separation process would be required. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
A new, versatile, and simple method for quantitative analysis of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry is described. These metals can be quantified by direct dissolution of fuel ethanol in water and subsequent voltammetric measurement after the accumulation step. A maximum limit of 20% (v/v) ethanol in water solution was obtained for voltammetric measurements without loss of sensitivity for metal species. Chemical and operational optimum conditions were analyzed in this study; the values obtained were pH 2.9, a 4.7-mum thickness mercury film, a 1,000-rpm rotation frequency of the working electrode, and a 600-s pre-concentration time. Voltammetric measurements were obtained using linear scan (LSV), differential pulse (DPV), and square wave (SWV) modes and detection limits were in the range 10(-9)-10(-8) mol L-1 for these metal species. The proposed method was compared with a traditional analytical technique, flame atomic absorption spectrometry (FAAS), for quantification of these metal species in commercial fuel ethanol samples.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A mercury film electrode was used to determine direct and simultaneously Pb(II) (at -410 mV) and Cu(II) (at -100 mV) in biodiesel by anodic stripping voltammetry. A linear response was obtained for Pb(II) and Cu(II) in the 2.00 × 10-8-1.00 × 10-7 mol L-1 concentration range and detection limits were 2.91 × 10-9 mol L-1 and 4.69 × 10-9 mol L-1 for Pb(II) and Cu(II), respectively, with recovery around of 100.0%. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A sensitive method is described for the determination of cefaclor by cathodic stripping voltammetry at the hanging mercury drop electrode. cefaclor is accumulated at the electrode surface as a mercury salt, which is reduced at -0.67 V. The optimum accumulation potential and accumulation time were +0.15 V and up to 180 s, respectively. Linear calibration graphs were obtained between 3.9 mu g.L-1 to 39 mu g.L-1 and the limit of determination was evaluated to be 1.9 mu g.L-1. The method was applied successfully to the determination of cefaclor in pharmaceutical formulations.
Resumo:
Cefaclor is not reducible at a mercury electrode, but it can be determined polarographically and by cathodic stripping voltammetry as its initial alkaline degradation product which is obtained in high yield by hydrolysis of cefaclor in Britton-Robinson (B-R) buffer pH 10 at 50 degrees C for 30 min (reduction peak at pH 10, -0.70 V). Differential pulse polarographic calibration graphs are linear up to at least 1 x 10(-4) mol l(-1). Recoveries of 93% of the cefaclor (n = 3) were obtained from urine spiked with 38.6 mu g ml(-1) using this polarographic method with 1 ml urine made up to 10 ml with pH 10 buffer. Using cathodic stripping voltammetry and accumulating at a hanging mercury drop electrode at -0.2 V for 30 s, linear calibration graphs were obtained from 0.35 to 40 mu g ml(-1) cefaclor in B-R buffer pH 10. A relative standard deviation of 4.2% (eta = 5) was obtained, and the limit of detection was calculated to be 2.9 ng ml(-1). Direct determination of cefaclor in human urine (1 ml of urine was made up to 10 ml with pH 10 buffer) spiked to 0.39 mu g ml(-1) was made (recovery 98.6%). (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
A mercury-free electrode chemically modified with carbon paste containing dimethylglyoxime was used for determination of nickel in fuel ethanol. The instrumental parameters and composition of the modified paste were optimized. The analytical curve for nickel determination from 5.0 x 10(-9) to 5.0 x10(-7) mol(-1) was obtained using 25 min of accumulation time. The detection limit and amperometric sensitivity obtained for this method were 2.7 x 10 mol(-1) and 5.2 x 10(8) mu A mol(-1) L, respectively. The values for nickel concentration in four commercial samples of fuel ethanol were obtained in the range of 1.1 x 10(-8) to 6.9 x 10(-8) mol(-1). A comparison to graphite furnace atomic absorption spectrometry (GFAAS) was performed for nickel determination in commercial samples of ethanol.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2,5-dimercapto-1,3,4-thiadiazole (DTTPSG-CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range -0.2 to +0.8 V (vs. Ag/AgCl), (0.02 mol L-1 KNO3; nu=20 mV s(-1)) show two peaks one at about 0.0 V and other at 0.31 V. However, the cathodic wave peak, around 0.0 V, is irregular and changes its form in each cycle. This peak at about 0.0 V is the reduction current for mercury(II) accumulated in the DTTPSG-CPE. The anodic wave peak at 0.31 V is well-defined and does not change during the cycles. The resultant material was characterized by cyclic and differential pulse anodic stripping voltammetry performed with the electrode in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. The precision for six determinations (n=6) of 0.05 and 0.20 mg (L)-(1) Hg(II) was 2.8 and 2.2% (relative standard deviation), respectively. The method was satisfactory and used to determine the concentration of mercury(II) in natural waters contaminated by this metal.