95 resultados para Local electronic structures

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ba(Zr0.75Ti0.25)O3 (BZT-75/25) powders were synthesized by the polymeric precursor method. Samples were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) techniques. Their electronic structures were evaluated by first-principle quantum mechanical calculations based on density functional theory at the B3LYP level. Their optical properties were investigated by ultraviolet-visible (UV-Vis) spectroscopy and photoluminescence (PL) measurements at room temperature. XRD patterns and Rietveld refinement data indicate that the samples have a cubic structure. XANES spectra confirm the presence of pyramidal [TiO5] clusters and octahedral [TiO6] clusters in the disordered BZT-75/25 powders. EXAFS spectra indicate distortion of Ti-O and Ti-O-Ti bonds the first and second coordination shells, respectively. UV-Vis absorption spectra confirm the presence of different optical bandgap values and the band structure indicates an indirect bandgap for this material. The density of states demonstrates that intermediate energy levels occur between the valence band (VB) and the conduction band (CB). These electronic levels are due to the predominance of 4d orbitals of Zr atoms in relation to 3d orbitals of Ti atoms in the CB, while the VB is dominated by 2p orbitals related to O atoms. There was good correlation between the experimental and theoretical optical bandgap values. When excited at 482 nm at room temperature, BZT-75/25 powder treated at 500 C for 2 h exhibited broad and intense PL emission with a maximum at 578 nm in the yellow region. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Er3+ ions were added to the PbTiO3 network using the polymeric precursor method to characterize the order-disorder transformation found in this material by means of experimental and theoretical approach. The disordered and ordered material structures were studied by photoluminescence measurements, X-ray diffraction (XRD) and U-V-visible spectroscopy. The Er3+ ions served as a marker to identify the structural short-range order beginning in the PbTiO3 matrix. From photoluminescence results it was concluded that disordered PbTiO3 powders have a certain short range order in the network that are undetected by XRD measurements. The electronic structures were calculated by the ab initio periodic method in DFT level with the non-local B3LYP hybrid approximation for the Ti atom site interpretation using density of states (DOS) results. This analysis enabled understanding that Ti atom sphere coordination can create possible states for radioactive return and trap of electron-holes pair. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ca0.95Sm0.05TiO3 (CT:Sm) powder was prepared by the polymeric precursor method (PPM). Order-disorder at short and long range has been investigated by means of Raman spectroscopy, X-ray diffraction (XRD), and photoluminescence emission (PL) experimental techniques. The broad PL band and the Sm emission spectrum measured at room temperature indicate the increase of structural order with annealing temperature. The measured PL emission reveals that the PL intensity changes with the degree of disorder in the CT: Sm. The electronic structures were performed by the ab initio periodic method in the DFT level with the hybrid nonlocal B3LYP approximation. Theoretical results are analyzed in terms of DOS, charge densities, and Mulliken charges. Localized levels into the band gap of the CT: Sm material favor the creation of the electron-hole pair, supporting the observed room-temperature PL phenomenon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nature of intense visible photoluminescence at room temperature of SrWO4 (SWO) non-crystalline thin films is discussed in the light of experimental results and theoretical calculations. The SWO thin films were synthesized by the polymeric precursors method. Their structural properties have been obtained by X-ray diffraction data and the corresponding photoluminescence (PL) spectra have been measured. The UV-vis optical spectra measurements suggest the creation of localized states in the disordered structure. The photoluminescence measurements reveal that the PL changes with the degree of disorder in the SWO thin film. To understand the origin of visible PL at room temperature in disordered SWO, we performed quantum-mechanical calculations on crystalline and disordered SWO periodic models. Their electronic structures are analyzed in terms of DOS, hand dispersion and charge densities. We used DFT method with the hybrid non-local B3LYP approximation. The polarization induced by the symmetry break and the existence of localized levels favors the creation of trapped holes and electrons, giving origin to the room temperature photoluminescence phenomenon in the SWO thin films. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

First-principles calculations set the comprehension over performance of novel cathodoluminescence (CL) properties of BaZrO3 prepared through microwave-assisted hydrothermal. Ground (singlet, s*) and excited (singlet s** and triplet t**) electronic states were built from zirconium displacement of 0.2 Å in {001} direction. Each ground and excited states were characterized by the correlation of their corresponding geometry with electronic structures and Raman vibrational frequencies which were also identified experimentally. A kind of optical polarization switching was identified by the redistribution of 4dz2 and 4dxz (Zr) orbitals and 2pz O orbital. As a consequence, asymmetric bending and stretching modes theoretically obtained reveal a direct dependence with their polyhedral intracluster and/or extracluster ZrO6 distortions with electronic structure. Then, CL of the as-synthesized BaZrO3 can be interpreted as a result of stable triplet excited states, which are able to trap electrons, delaying the emission process due to spin multiplicity changes. © 2013 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Visible photoluminescence (PL) was observed for the first time at room temperature in structurally disordered calcium strontium tungstate powder, Ca0.60Sr0.40WO4 (CSW), obtained by the polymeric precursor method. The PL behavior of CSW powders has been analyzed as a function of the disorder rate, based on experimental and theoretical studies. Quantum mechanical theory based on density functional theory at the B3LYP level has been employed to study the electronic structure of two periodic models representing both crystalline and disordered powders. Their electronic structures have been analyzed in terms of density of states, band dispersion and charge densities. The calculations indicate a break in symmetry when passing from crystalline to disordered models, creating localized electronic levels above the valence band. Moreover, a negative charge transfer process takes place from the [WO3] cluster to the [WO4] cluster. The polarization induced by the break in symmetry and the existence of localized levels favors the creation of trapped holes and electrons, originating the PL phenomenon. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The SrWO4 (SWO) powders were synthesized by the polymeric precursor method and annealed at different temperatures. The SWO structure was obtained by X-ray diffraction and the corresponding photoluminescence (PL) spectra was measured. The PL results reveal that the structural order-disorder degree in the SWO lattice influences in the PL emission intensity. Only the structurally order-disordered samples present broad and intense PL band in the visible range. To understand the origin of this phenomenon, we performed quantum-mechanical calculations with crystalline and order-disordered SWO periodic models. Their electronic structures were analyzed in terms of band structure. The appearance of localized levels in the band gap of the order-disordered structure was evidenced and is a favorable condition for the intense PL to occur.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thin films of barium and strontium titanate (BST), synthesized by the polymeric precursor solution and spin coated on [Pt (140nm)/Ti (10 nM)/SiO2(1000 nm)/Si] substrates were found to be photoluminescent at room temperature when heat treated below 973 K, i.e. before their crystallization. First principles quantum mechanical techniques, based on density functional theory (DFT) were employed to study the electronic structure of two periodic models: one is standing for the crystalline BST thin film and the other one for the structurally disordered thin film. The aim is to compare the photoluminescence (PL) spectra of the crystalline and disordered thin films with their UV-vis spectra and with their computed electronic structures. The calculations show that new localized states are created inside the band gap of the crystalline model, as predicted by the UV-vis spectra. The study of the charge repartition in the structure before and after deformation of the periodic model shows that a charge gradient appears among the titanate clusters. This charge gradient, together with the new localized levels, gives favorable conditions for the trapping of holes and electrons in the structure, and thus to a radiative recombination process. Our models are not only consistent with the experimental data, they also allow to explain the relations between structural disorder and photoluminescence at room temperature. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Botânica) - IBB