42 resultados para Linear combination

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper deals with the classes S-3(omega, beta, b) of strong distribution functions defined on the interval [beta(2)/b, b], 0 < beta < b <= infinity, where 2 omega epsilon Z. The classification is such that the distribution function psi epsilon S-3(omega, beta, b) has a (reciprocal) symmetry, depending on omega, about the point beta. We consider properties of the L-orthogonal polynomials associated with psi epsilon S-3(omega, beta, b). Through linear combination of these polynomials we relate them to the L-orthogonal polynomials associated with some omega epsilon S-3(1/2, beta, b). (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study evaluated using of Multicriteria Evaluation in a GIS, specifically by Weighted Linear Combination Method for generation of map of priority areas for forest restoration in the initial part of River Pardo Basin, SP, in order to water resources conservation. Aiming to define criteria and restrictions it was used Participatory Techniques, and the following factors had been selected: proximity of the hydrographic network, proximity of forest cover, slope and erodibility of soil. To calculate the weight to each factor it was used the decision-making process, known as Analytic Hierarchy Analysis, this method consists of a paired comparison of factors to determine the relative importance of each. According to Weighted Linear Combination, the very high priority areas have a more limited spatial distribution, with an apparent concentration around the water bodies, outlining a buffer to the river system. The proximity factor of the hydrographic network, and enables the connection forestry, contributed, along with the factor of proximity to forest cover, so there would be the definition of most of the areas with the highest priority in the basin, which concentrate the largest areas of forest and native riparian areas along the hydrographic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

From the characterization of biophysical attributes of the watershed (slope, soil types, capacity to land use and land cover), this article, used the multi-criteria analysis method – Weighted Linear Combination, defined priority areas for adaptation to the use of land as to its capacity of use. With this methodological approach, were created for the watershed under study, four classes, formed by different combinations of biophysical attributes (discrete data), representing levels of priorities for agricultural land use. The Multicriteria Evaluation in a GIS is suitable for the mapping of priority areas to the suitability of land use in watersheds. The geospatial information on the biophysical environment, generated from the methodological procedures described in this article, has a high positive potential to guide the rational planning of the use of natural resources and territorial occupation, besides serving as a powerful instrument to guide policies and collective processes of decision on the use and land cover.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ionospheric effect is one of the major errors in GPS data processing over long baselines. As a dispersive medium, it is possible to compute its influence on the GPS signal with the ionosphere-free linear combination of L1 and L2 observables, requiring dual-frequency receivers. In the case of single-frequency receivers, ionospheric effects are either neglected or reduced by using a model. In this paper, an alternative for single-frequency users is proposed. It involves multiresolution analysis (MRA) using a wavelet analysis of the double-difference observations to remove the short- and medium-scale ionosphere variations and disturbances, as well as some minor tropospheric effects. Experiments were carried out over three baseline lengths from 50 to 450 km, and the results provided by the proposed method were better than those from dual-frequency receivers. The horizontal root mean square was of about 0.28 m (1 sigma).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When GNSS receivers capable of collecting dual-frequency data are available, it is possible to eliminate the first-order ionospheric effect in the data processing through the ionosphere-free linear combination. However, the second- and third-order ionospheric effects still remain. The first-, second- and third-order ionospheric effects are directly proportional to the total electron content (TEC), although the second- and third-order effects are influenced, respectively, by the geomagnetic field and the maximum electron density. In recent years, the international scientific community has given more attention to these kinds of effects and some works have shown that for high precision GNSS positioning these effects have to be taken into consideration. We present a software tool called RINEX_HO that was developed to correct GPS observables for second- and third-order ionosphere effects. RINEX_HO requires as input a RINEX observation file, then computes the second- and third-order ionospheric effects, and applies the corrections to the original GPS observables, creating a corrected RINEX file. The mathematical models implemented to compute these effects are presented, as well as the transformations involving the earth's magnetic field. The use of TEC from global ionospheric maps and TEC calculated from raw pseudorange measurements or pseudoranges smoothed by phase is also investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

After removal of the Selective Availability in 2000, the ionosphere became the dominant error source for Global Navigation Satellite Systems (GNSS), especially for the high-accuracy (cm-mm) demanding applications like the Precise Point Positioning (PPP) and Real Time Kinematic (RTK) positioning.The common practice of eliminating the ionospheric error, e. g. by the ionosphere free (IF) observable, which is a linear combination of observables on two frequencies such as GPS L1 and L2, accounts for about 99% of the total ionospheric effect, known as the first order ionospheric effect (Ion1). The remaining 1% residual range errors (RREs) in the IF observable are due to the higher - second and third, order ionospheric effects, Ion2 and Ion3, respectively. Both terms are related with the electron content along the signal path; moreover Ion2 term is associated with the influence of the geomagnetic field on the ionospheric refractive index and Ion3 with the ray bending effect of the ionosphere, which can cause significant deviation in the ray trajectory (due to strong electron density gradients in the ionosphere) such that the error contribution of Ion3 can exceed that of Ion2 (Kim and Tinin, 2007).The higher order error terms do not cancel out in the (first order) ionospherically corrected observable and as such, when not accounted for, they can degrade the accuracy of GNSS positioning, depending on the level of the solar activity and geomagnetic and ionospheric conditions (Hoque and Jakowski, 2007). Simulation results from early 1990s show that Ion2 and Ion3 would contribute to the ionospheric error budget by less than 1% of the Ion1 term at GPS frequencies (Datta-Barua et al., 2008). Although the IF observable may provide sufficient accuracy for most GNSS applications, Ion2 and Ion3 need to be considered for higher accuracy demanding applications especially at times of higher solar activity.This paper investigates the higher order ionospheric effects (Ion2 and Ion3, however excluding the ray bending effects associated with Ion3) in the European region in the GNSS positioning considering the precise point positioning (PPP) method. For this purpose observations from four European stations were considered. These observations were taken in four time intervals corresponding to various geophysical conditions: the active and quiet periods of the solar cycle, 2001 and 2006, respectively, excluding the effects of disturbances in the geomagnetic field (i.e. geomagnetic storms), as well as the years of 2001 and 2003, this time including the impact of geomagnetic disturbances. The program RINEX_HO (Marques et al., 2011) was used to calculate the magnitudes of Ion2 and Ion3 on the range measurements as well as the total electron content (TEC) observed on each receiver-satellite link. The program also corrects the GPS observation files for Ion2 and Ion3; thereafter it is possible to perform PPP with both the original and corrected GPS observation files to analyze the impact of the higher order ionospheric error terms excluding the ray bending effect which may become significant especially at low elevation angles (Ioannides and Strangeways, 2002) on the estimated station coordinates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of function approximation is motivated by the human limitation and inability to register and manipulate with exact precision the behavior variations of the physical nature of a phenomenon. These variations are referred to as signals or signal functions. Many real world problem can be formulated as function approximation problems and from the viewpoint of artificial neural networks these can be seen as the problem of searching for a mapping that establishes a relationship from an input space to an output space through a process of network learning. Several paradigms of artificial neural networks (ANN) exist. Here we will be investigated a comparative of the ANN study of RBF with radial Polynomial Power of Sigmoids (PPS) in function approximation problems. Radial PPS are functions generated by linear combination of powers of sigmoids functions. The main objective of this paper is to show the advantages of the use of the radial PPS functions in relationship traditional RBF, through adaptive training and ridge regression techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we described how a multidimensional wavelet neural networks based on Polynomial Powers of Sigmoid (PPS) can be constructed, trained and applied in image processing tasks. In this sense, a novel and uniform framework for face verification is presented. The framework is based on a family of PPS wavelets,generated from linear combination of the sigmoid functions, and can be considered appearance based in that features are extracted from the face image. The feature vectors are then subjected to subspace projection of PPS-wavelet. The design of PPS-wavelet neural networks is also discussed, which is seldom reported in the literature. The Stirling Universitys face database were used to generate the results. Our method has achieved 92 % of correct detection and 5 % of false detection rate on the database.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exact analytic solutions are found to the Dirac equation for a combination of Lorentz scalar and vector Coulombic potentials with additional non-Coulombic parts. An appropriate linear combination of Lorentz scalar and vector non-Coulombic potentials, with the scalar part dominating, can be chosen to give exact analytic Dirac wave functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, we constructed an energy-dependent point interaction (EDPI) in its most general form in one-dimensional quantum mechanics. In this paper, we show that stationary solutions of the Schrodinger equation with the EDPI form a complete set. Then any nonstationary solution of the time-dependent Schrodinger equation can be expressed as a linear combination of stationary solutions. This, however, does not necessarily mean that the EDPI is self-adjoint and the time-development of the nonstationary state is unitary. The EDPI is self-adjoint provided that the stationary solutions are all orthogonal to one another. We illustrate situations in which this orthogonality condition is not satisfied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the higgsing of three-dimensional N = 6 superconformal ABJM type theories coupled to conformal supergravity, so called topologically gauged ABJM theory, thus providing a gravitational extension of previous work on the relation between N M2 and N D2-branes. The resulting N = 6 supergravity theory appears at a chiral point similar to that of three-dimensional chiral gravity introduced recently by Li, Song and Strominger, but with the opposite sign for the Ricci scalar term in the lagrangian. We identify the supersymmetry in the broken phase as a particular linear combination of the supersymmetry and special conformal supersymmetry in the original topologically gauged ABJM theory. We also discuss the higgsing procedure in detail paying special attention to the role played by the U(1) factors in the original ABJM model and the U(1) introduced in the topological gauging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Five minute-averaged values of sky clearness, direct and diffuse indices, were used to model the frequency distributions of these variables in terms of optical air mass. From more than four years of solar radiation observations it was found that variations in the frequency distributions of the three indices of optical air mass for Botucatu, Brazil, are similar to those in other places, as published in the literature. The proposed models were obtained by linear combination of normalized Beta probability functions, using the observed distributions derived from three years of data. The versatility of these functions allows modelling of all three irradiance indexes to similar levels of accuracy. A comparison with the observed distributions obtained from one year of observations indicate that the models are able to reproduce the observed frequency distributions of all three indices at the 95% confidence level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetic circular dichroism (MCD) of F2+ centers in KCl:SH- has been measured in absorption in the 1ssigma(g) --> 2p(y)pi(u) transitions at 493 and 509 nm, with fields up to 5 T and in the temperature range 1.5 K < T < 77 K. Within the limit of detection, no MCD is observed in the near infrared transition 1ssigma(g) --> 2psigma(u) as well as in both emissions 2ppi(u) --> 1ssigma(g) and 2psigma(u) --> 1ssigma(g). The optical detection of EPR in the F2+ ground state presents an isotropic single band with g = 1.965 +/- 0.007. The spin-lattice relaxation measured at H = 0.32 T is typical of a direct process T-1 = 4.3 x 10(-2_ coth (gmu(B)H/2k(B)T). The spectral variation of the MCD is calculated using perturbation theory to first order. The Hamiltonian includes the spin-orbit interaction in the 2ppi(u) excited state and the orbital molecular wave functions are obtained by a linear combination of 1s and 2p atomic orbitals. The calculated MCD is in good agreement with the observed one, for the spin-orbit interaction strength Pound(z) = 3.6 meV.