59 resultados para Lead compounds.
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Solid M-Ox compounds, where M represents Mg(II), Zn(II), Pb(II) and NbO(III), and Ox is 8-quinolinol, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) and infrared absorption spectra (IR) have been used to characterize and to study the thermal stability and thermal decomposition of these compounds. © 1997 Akadémiai Kiadó.
Resumo:
The phase evolution of lead titanate processed by the polymeric precursor method was investigated by thermal analysis, X-ray diffraction, and high-resolution transmission electron microscopy. The results showed that the cubic perovskite PbTiO3 (PT) phase is formed from an inorganic amorphous precursor at a temperature of 444 °C. A gradual transition from cubic to tetragonal perovskite PT was observed with the increase of calcination time at this temperature. HRTEM results showed that the cubic PT particles have a size of around 5 nm. The identification of cubic PT as an intermediate phase supports the hypothesis that the chemical homogeneity was kept at the molecular level during the synthesis process, with no cation segregation.
Resumo:
Strontium-modified lead titanate thin films with composition Pb1-xSrxTiO3 were grown on Pt/Ti/SiO2/Si substrates using the polymeric precursor method. The structural phase evolution as a function of the Sr contents was studied using micro-Raman scattering, specular reflectance infrared Fourier transform spectroscopy, and x-ray diffraction. The results showed a gradual change from tetragonal to cubic structure, the transition occurring at about x = 0.58. The infrared reflectance spectra showed that the frequency of several peaks decreases as the strontium concentration increases. These features are correlated with a decrease in the tetragonal distortion of the TiO6 octahedra as the strontium concentration increases.
Resumo:
The optical limiting behavior and nonlinear optical properties of antimony and lead oxyhalide glasses were discussed. The large nonlinear absorption coefficients which range from 11 to 20 cm/GW was determined using standard Z-scan technique. The photodarkening in the samples were observed which suggested that they can also be useful for inscribing Bragg gratings using green lasers of moderate power.
Resumo:
Composites made of calcium modified lead titanate ceramic powder and poly (ether-ether-ketone) high performance polymer matrix were prepared in the film form using a hot press. The acoustic and electromechanical properties of the composites have been determined using the ultrasonic immersion technique and piezoelectric spectroscopy, respectively. The composite film with 60 - 40 vol.% PTCa/PEEK was tested as acoustic emission detector. Preliminary results shown that the piezo composite can be used as sensor to evaluate the behavior of materials.
Resumo:
Lead zirconate titanate Pb(Zr0.50Ti0.50)O3 (PZT) thin films were deposited by a polymeric chemical method on Pt(111)/Ti/SiO2/Si substrates to understand the mechanisms of phase transformations and the effect of film thickness on the structure, dielectric, and piezoelectric properties in these films. PZT films pyrolyzed at temperatures higher than 350 °C present a coexistence of pyrochlore and perovskite phases, while only perovskite phase grows in films pyrolyzed at temperatures lower than 300 °C. For pyrochlore-free PZT thin films, a small (100)-orientation tendency near the film-substrate interface was observed. Finally, we demonstrate the existence of a self-polarization effect in the studied PZT thin films. The increase of self-polarization with the film thickness increasing from 200 nm to 710 nm suggests that Schottky barriers and/or mechanical coupling near the film-substrate interface are not primarily responsible for the observed self-polarization effect in our films. © 2013 AIP Publishing LLC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O processo pirometalúrgico convencional para a produção de chumbo metálico é comparado com dois novos processos ambientalmente não agressivos: o eletrohidrometalúrgico e fusão alcalina. O processo eletrohidrometalúrgico consiste em reduzir o tamanho das partículas dos compostos de chumbo e lixiviar os mesmos com uma solução ácida de fluoborato férrico. Neste ponto, o chumbo é dissolvido com os íons férricos sendo reduzidos a íons ferrosos. A solução resultante da lixiviação é bombeada para os compartimentos catódicos de uma célula eletrolítica de diafragma nos quais o chumbo metálico é depositado em catodos de aço inoxidável numa forma compacta e pura. A solução que é empobrecida em íons Pb2+ é então enviada aos compartimentos anódicos da mesma célula onde, nas superfícies de anodos ocorre a oxidação dos íons ferrosos a férricos, que retornam ao estágio de lixiviação. O processo de fusão alcalina consiste em se juntar soda cáustica fundida, enxofre e compostos de chumbo num reator a uma temperatura entre 600 °C e 700 °C. Como um resultado chumbo metálico é obtido juntamente com sais fundidos de sódio, sulfetos metálicos e borra. O fundido é processado, resultando em borra, sulfetos metálicos, soda cáustica e enxofre. Estes dois últimos retornam para o reator. Ambos os processos permitem a recuperação de metais como antimônio, estanho, enxofre e prata, que em processo convencional são perdidos na escória. Esses novos processos são ambientalmente corretos sem poluições severas de Pb e SO2. O chumbo metálico obtido é mais puro que aquele do processo convencional.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The phase formation mechanism, as well as the morphotropic phase boundary, of lead zirconate titanate (PZT) processed by a partial oxalate method was investigated by simultaneous thermal analysis (TG-DTA) and by qualitative and quantitative X-ray diffraction (XRD). The results show that the ZrxTi1-xO2 (ZT) phase reacts with PbO forming the PZT phase without intermediate phases. XRD analysis showed the coexistence of rhombohedral and tetragonal phases for 0.47 ≤ x ≤ 0.55 with the phase boundary composition for x = 0.51. For low calcination temperatures, preferential formation of the PZT rhombohedral phase was observed. A model for phase formation of PZT by the partial oxalate method is proposed based on the existence of two interfaces of reaction (PbO-PZT and PZT-ZT) and diffusion of cations.
Resumo:
PbMg1/3Nb2/3O3 (PMN) prepared by organic solution of citrates was analyzed by the Rietveld method to determine the influence of seeds and dopants on the perovskite and pyrochlore phase formation. It was observed that pyrochlore phase formation increases with an increase in calcination time when no additives are included during the preparation. It was also observed that a greater amount of perovskite phase appeared in doped or seeded samples. The fraction of perovskite phase increased from 88 mol % in pure sample to ∼95 mol % in doped and seeded samples calcined at 800°C for 1 h. It is clear that the addition of dopants or seeds during PMN preparation can enhance the formation of perovskite phase.