176 resultados para LARVAL MIDGUT

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Foram pesquisadas variações no padrão eletroforético das proteínas e da atividade da fosfatase ácida contidas em extratos do intestino médio de Apis mellifera L. durante o último estágio larval e pupação com a finalidade de estabelecer um paralelo entre os resultados e os eventos da metamorfose. Verificou-se maior variedade de bandas protéicas durante o estágio de pré-pupa e menor na pupa de olho marrom. A atividade da fosfatase ácida foi maior durante o último estágio larval e menor na pupa de olho branco. A maior variedade de bandas protéicas na pré-pupa coincide com a histólise do epitélio larval e reconstituição do epitélio pupal, enquanto a menor variabilidade na pupa de olho marrom coincide com o fim da diferenciação do intestino médio. A maior atividade fosfatásica no último estágio larval pode ocorrer em razão da sua função na histólise do epitélio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dermatobia hominis (Linnaeus, 1781) midgut is internally lined by an epithelium of polytenic cells, some low others prismatic with well developed brush border. Their apical portion are enlarged by secretory vesicles, forming button-like structures that are pinched off to the lumen, some accompained by the nucleus characterizing apocrine and holocrine secretions. This epithelium is gradually renewed by small, non polytenic regenerative cells, found scattered at its basal portion. At the end of the third instar the metamorphosis begins. The epithelial cells present signs of degeneration and at the first day of pupation the regenerative cells increase in number. By the 5th day of pupation these regenerative cells, besides being increased in number, differentiate themselves into two layers: one similar to the dense conective tissue that sustainning the larval epithelium is pinched off to the midgut lumen forming the yellow bodies; the other, develops right under it as the imaginal epitelium. The disorganized muscles bundles of the midgut wall, are invaded by phagocytes. At the end of pupation the midgut has a low prismatic epithelium with brush-border. In the adult, the torax portion of the midgut has prismatic homogeneously basophilic epithelium while in the abdominal portion the epithelium is made of high prismatic cells full of small vacuoles. The larval midgut epithelium suffers programmed cell death non compatible with apoptose. During the metamorphosis the midgut lenght diminishes from 31mm in the larva to 14mm in the adult.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The digestive tract of insects is an important natural, physical, and chemical defense barrier against pathogen invasion. Certain. lepidopteran caterpillars are serious pests of agricultural crops and their biology has received much attention, but little is known about the larval noctuid gut. The morphological analysis of the digestive tract in Anticarsia gemmatalis under scanning electron microscopy (SEM) is a good model for studies about its defense mechanism. The material was fixed (2,5% glutaraldehyde solution; 0.1 M-phosphate buffer, pH 7.3), post-fixed (1% osmium tetroxide in the same buffer), dried at critical point, gold coated and analyzed in a SEM 515-Philips. A. gemmatalis digestive tract consists of a straight duct of varying length and diameter, subdivided in three main regions: the foregut formed by the oral cavity, pharynx, esophagus, and crop; the midgut that is the largest portion of the digestive tract without noticeable morphological differentiation along its length; and the hindgut that is morphologically differentiated in pylorus, ileum, colon, and rectum. Although the general morphology of the A. gemmatalis digestive tract is quite similar to the other Lepidoptera species, the anatomical array of the crop muscular layers is quite different comparing with the description for other larval insect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The comparative study of the ultrastructure of the midgut epithelium of stingless bee larvae that eat plant protein (pollen) and animal protein (carrion) throughout the larval phase, shows variations in the digestive cells that are only relative to larval aging and not to the type of larval diet. The cells of older larvae present a cytoplasm with empty spaces that result from emptying of lipid and glycogen stocks, and the presence of autophagic vacuoles. These results are discussed in relation to the hypothesis that variations in the digestive tract of insects may be associated with different diets or phylogeny. We conclude that different diets do not determine cell morphology adaptations in the studied species. As the variations in the ultrastructure of the midgut epithelium are the same in all studied species, including the necrophagous species Trigona hypogea, throughout the larval stage, this sequence of changes seems to be due to different physiological state during larval development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toward the end of the larval phase (pre-pupa), the reproductive systems of Melipona quadrifasciata and Frieseomelitta varia workers are anatomically similar. Scanning electron microscopy showed that during this developmental phase the right and left ovaries are fused and form a heart-shaped structure located above the midgut. Each ovary is connected to the genital chamber by a long and slender lateral oviduct. During pupal development, the lateral oviducts of workers from both species become extremely reduced due to a drastic process of cell death, as shown by transmission electron microscopy. During the lateral oviduct shortening, their simple columnar epithelial cells show some signs of apoptosis in addition to necrosis. Cell death was characterized by cytoplasmic vesiculation, peculiar accumulation of glycogen, and dilation of cytoplasmic organelles such as mitochondria and rough endoplasmic reticulum. The nuclei, at first irregularly contoured, became swollen, with chromatin flocculation and various areas of condensed chromatin next to the nuclear envelope. At the end of the pupal phase, deep recesses marked the nuclei. At emergence, worker and queen reproductive systems showed marked differences, although reduction in the lateral oviducts was an event occurring in both castes. However, in queens the ovarioles increased in length and the spermatheca was larger than that of workers. At the external anatomical level, the reproductive system of workers and queens could be distinguished in the white- and pink-eyed pupal phase. The metamorphic function of the death of lateral oviduct cells, with consequent oviduct shortening, is discussed in terms of the anatomical reorganization of the reproductive system and of the ventrolateral positioning of adult worker bee ovaries. (C) 2000 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The midgut of Apis mellifera is remodeled during metamorphosis. The epithelium and, to a lesser extent, the muscular sheath degenerate between the end of the last larval instar and the onset of pupation (prepupa).The larval epithelium is shed to the midgut lumen and digested, while a new epithelium is reconstructed from larval regenerative cells. During pupation, some reorganization still occurs, mainly in brown-eyed pupae. In pharate adult, the midgut wall shows the characteristics of adult, although some cells have pycnotic nuclei. The localization of alkaline and acid phosphatases showed that these enzymes were not involved in the reabsorption of the midgut wall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree, Azadirachta indica, on the midgut cells of predatory larvae Ceraeochrysa claveri were analyzed. C. claveri were fed on eggs of Diatraea saccharalis treated with neem oil at a concentration of 0.5%, 1% and 2% during throughout the larval period. Light and electron microscopy showed severe damages in columnar cells, which had many cytoplasmic protrusions, clustering and ruptured of the microvilli, swollen cells, ruptured cells, dilatation and vesiculation of rough endoplasmic reticulum, development of smooth endoplasmic reticulum, enlargement of extracellular spaces of the basal labyrinth, intercellular spaces and necrosis. The indirect ingestion of neem oil with prey can result in severe alterations showing direct cytotoxic effects of neem oil on midgut cells of C. claveri larvae. Therefore, the safety of neem oil to non-target species as larvae of C. claveri was refuted, thus the notion that plants derived are safer to non-target species must be questioned in future ecotoxicological studies. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of morphological and ultrastructural alterations in target organs have been useful for evaluating the sublethal effects of biopesticides regarded as safe for non-target organisms in ecotoxicological analyses. One of the most widely used biopesticides is neem oil, and its safety and compatibility with natural enemies have been further clarified through bioassays performed to analyze the effects of indirect exposure by the intake of poisoned prey. Thus, this study examined the cellular response of midgut epithelial cells of the adult lacewing, Ceraeochrysa claveri, to neem oil exposure via intake of neem oil-contaminated prey during the larval stage. C. claveri larvae were fed Diatraea saccharalis eggs treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval stage. The adult females obtained from these treatments were used at two ages (newly emerged and at the start of oviposition) in morphological and ultrastructural analyses. Neem oil was found to cause pronounced cytotoxic effects in the adult midgut, such as cell dilation, emission of cytoplasmic protrusions, cell lysis, loss of integrity of the cell cortex, dilation of cisternae of the rough endoplasmic reticulum, swollen mitochondria, vesiculated appearance of the Golgi complex and dilated invaginations of the basal labyrinth. Epithelial cells responded to those injuries with various cytoprotective and detoxification mechanisms, including increases in cell proliferation, the number of calcium-containing cytoplasmic granules, and HSP 70 expression, autophagic processes and the development of smooth endoplasmic reticulum, but these mechanisms were insufficient for recovery from all of the cellular damage to the midgut. This study demonstrates that neem oil exposure impairs the midgut by causing sublethal effects that may affect the physiological functions of this organ, indicating the importance of studies of different life stages of this species and similar species to evaluate the safe and compatible integrated use of biopesticides.