27 resultados para IMMOBILIZATION STRESS
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Catecholamines act as neurotransmitters and hormones. Studies conducted to understand the synthesis and metabolism of these monoamines during stress have been the main concern of many authors. This work proposes to investigate the time course of changes in epinephrine and norepinephrine concentration in adrenal gland obtained from rats submitted to acute immobilization stress. The results of the present study indicate that acute immobilization stress during 5 and 15min did not provoke changes in epinephrine and norepinephrine concentrations in adrenal gland in relation to the control group. Such results are justified due to the short time of the stress, showing that the stress did not provoke physiological alteration. The epinephrine and norepinephrine concentrations in adrenal gland increased significantly after the immobilization session in stressed groups during 30 and 50min as compared to control group. This increase probably is due to the emotional component of the immobilization stress. In this way, we suggested that the immobilization stress provoke increase in the biosynthesis of catecholamines in the adrenal gland from rats. However, the results shows that a maximum increase is reached at 30min of immobilization stress and then a decrement of catecholamines levels starts at 50min of the experimental design. This decline in catecholamines level may be consequence of adaptation to stress situations, an increase of the activity of the uptake systems and/or metabolization of catecholamines. In conclusion, these results suggest an effective participation of the adrenal glands to maintain the homeostasis of organism to the stressful conditions. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
In order to investigate whether prolonged stress interferes with the onset of sexual behavior at puberty and with fertility at adulthood, prepubertal male Wistar rats (40 days of age) were immobilized 6 h a day for 15 days (up to early puberty) or for 60 days (until sexual maturity). Pubertal stressed rats showed a two-fold increase in the latency for the first mount (probably due to repeated aversive experience in which a change of environment was always followed by immobilization) and a 2.5-fold increase in the frequency of thrusting (indicative of enhanced sexual performance). The apparently stimulatory effect of prolonged stress on the onset of sexual behavior is discussed in terms of increased testosterone level and interference with the complex interchanges between the neurotransmitters/neuropeptides involved in the central control of male sexual activity. Adult stressed animals were mated with normal females, which became pregnant but exhibited a more than two-fold increase in both pre-implantation and post-implantation loss, probably due to a smaller rate of fertilization and/or fertilization with damaged spermatozoa.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Environmental toxicants and stress influence the health and behavior of people from different parts of the world. In the present study, aggressive behavior was evaluated in rats exposed to cadmium (Cd) for four weeks and subjected to immobilization stress (IS) based on the resident/intruder paradigm. Latency to the first bite (LB), total number of attacks (NA), total duration of attack manifestations (DAM), and a composite aggression score (CAS) were used to assess aggressiveness. Cadmium concentrations in the blood and the brain were determined. We observed that the parameters of aggressiveness were not altered by either Cd or IS when administered separately. However, animals exposed to Cd + IS had increased NA, DAM, and CAS. Cadmium was detected in the blood and the brain after treatment and Cd + IS exposure modified Cd distribution in these tissues. These results suggest that exposure to low levels of Cd associated with stress may lead to increased aggressiveness in rats. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to investigate the role of the lateral hypothalamus (LH) and its local glutamatergic neurotransmission in the cardiovascular adjustments observed when rats are submitted to acute restraint stress. Bilateral microinjection of the nonspecific synaptic inhibitor CoCl2 (0.1 nmol in 100 nL) into the LH enhanced the heart rate (HR) increase evoked by restraint stress without affecting the blood pressure increase. Local microinjection of the selective N-methyl-d-aspartate (NMDA) glutamate receptor antagonist LY235959 (2 nmol in 100 nL) into the LH caused effects that were similar to those of CoCl2. No changes were observed in the restraint-related cardiovascular response after a local microinjection of the selective non-NMDA glutamatergic receptor antagonist NBQX (2 nmol in 100 nL) into the LH. Intravenous administration of the muscarinic cholinergic receptor antagonist homatropine methyl bromide (0.2 mg/kg), a quaternary ammonium drug that does not cross the blood-brain barrier, abolished the changes in cardiovascular responses to restraint stress following LH treatment with LY235959. In summary, our findings show that the LH plays an inhibitory role on the HR increase evoked by restraint stress. Present results also indicate that local NMDA glutamate receptors, through facilitation of cardiac parasympathetic activity, mediate the LH inhibitory influence on the cardiac response to acute restraint stress. The bilateral microinjection of the CoCl2 or LY235959 into the LH enhanced the HR increase evoked by restraint stress without affecting the blood pressure increase. Intravenous administration of the homatropine methyl bromide abolished the changes in cardiovascular responses to restraint stress following LH treatment with LY235959. These results suggest that such LH influence is mediated by local NMDA glutamate receptors and involves parasympathetic nervous activation. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Resumo:
Systemic administration of cannabidiol (CBD) is able to attenuate cardiovascular responses to acute restraint stress through activation of 5-HT1A receptors. Previous results from our group suggest that the bed nucleus of the stria terminalis (BNST) is involved in the antiaversive effects of the CBD. Moreover, it has been proposed that synapses within the BNST influence restraint-evoked cardiovascular changes, in particular by an inhibitory influence on the tachycardiac response associated to restraint stress. Thus, the present work investigated the effects of CBD injected into the BNST on cardiovascular changes induced by acute restraint stress and if these effects would involve the local activation of 5-HT1A receptors. The exposition to restraint stress increased both blood pressure and heart rate (HR). The microinjection of CBD (30 and 60nmol) into the BNST enhanced the restraint-evoked HR increase, in a dose-dependent manner, without affecting the pressor response. The selective 5-HT1A receptor antagonist WAY100635 by itself did not change the cardiovascular responses to restraint stress, but blocked the effects of CBD. These results showed that CBD microinjected into the BNST enhanced the HR increase associated with acute restraint stress without affecting the blood pressure response. Although these results are not in agreement with those observed after systemic administration of CBD, they are similar to effects observed after reversible inactivation of the BNST. Moreover, similar to the effects observed after systemic administration, CBD effects in the BNST seem to depend on activation of 5-HT1A receptors. © 2012 Elsevier B.V. and ECNP.
Resumo:
Stress is a generic term that summarizes how psychosocial and environmental factors influence physical and mental well-being. The interaction between stress and immunity has been widely investigated, involving the neuroendocrine system and several organs. Assays using natural products in stress models deserve further investigation. Propolis immunomodulatory action has been mentioned and it has been the subject of scientific investigation in our laboratory. The aim of this study was to evaluate if and how propolis activated macrophages in BALB/c mice submitted to immobilization stress, as well as the histopathological analysis of the thymus, bone marrow, spleen and adrenal glands. Stressed mice showed a higher hydrogen peroxide (H2O2) generation by peritoneal macrophages, and propolis treatment potentiated H2O2 generation and inhibited nitric oxide (NO) production by these cells. Histopathological analysis showed no alterations in the thymus, bone marrow and adrenal glands, but increased germinal centers in the spleen. Propolis treatment counteracted the alterations found in the spleen of stressed mice. New research is being carried out in order to elucidate propolis immunomodulatory action during stress.
Resumo:
The so-called endocrine disruptors have been described as compounds which interfere with the estrogen action in their receptors and may exert a crucial role in the development of the reproductive tract and in the brain sexual differentiation. Thus, conducts and/or exposure to these drugs in the perinatal period that apparently do not endanger the neonate may cause side effects. During embrionary development, the gonads, through discharge of a small quantity of reproductive hormones, will guarantee the phenotype of male or female at birth, as well as actuate in specific areas sexual differentiation of the central nervous system. Several experimental models have shown an interference of drugs acting as endocrine disruptors in hypothalamic sexual differentiation. Thus, reproductive function is impaired by exposure to estrogen in the perinatal life of rats and the mechanisms involved in this effect are distinct for males and females. Perinatal exposure to drugs which may be considered endocrine disrupters may induce an incomplete masculinization and defeminization of the central nervous system. Alterations in these processes, if present, generally are perceived only at puberty or adult reproductive life. These later alterations may include anomalies in the process of fertility or in sexual behavior.
Resumo:
Ventilatory frequency (VF) was investigated in the fish Nile tilapia, Oreochromis niloticus, subjected to confinement, electroshock or social stressor. Fish were allowed to acclimatize to tank conditions for 10 days (1 fish/aquarium). VF baseline was determined 5 days after adjustment had been started. At the 10th day of isolation, stressor effects on VF were assessed. The stressors were imposed during 60 min: pairing with a larger resident animal (social stressor), or gentle electroshock (AC, 20 V, 15 mA, 100 Hz for 1 min every 4 min), or space restriction (confinement). VF was quantified immediately after the end of the stressor imposition. Baseline of VF was not statistically different among groups. Social stressor clearly induced VF to increase, while an increased or decreased VF can be observed for both confinement and electroshock. However, fish tend to increase their VF in response to confinement and decrease in the case of electroshock. These results suggest that VF is a sensitive behavioural indicator for distinguishing stress responses in the fish Nile tilapia among different stressors. © 2006 Elsevier GmbH. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Efeito da própolis sobre parâmetros imunológicos de camundongos Balb/c submetidos a estresse crônico
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)