7 resultados para Hippocampus (Brain)

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated the involvement of dorsal hippocampus (DH) 5-HT1A receptors in the mediation of the behavioral effects caused by the pharmacological manipulation of 5-HT neurons in the median raphe nucleus (MRN). To this end, we used the rat elevated T-maze test of anxiety. The results showed that intra-DH injection of the 5-HT1A/7 agonist 8-OH-DPAT facilitated inhibitory avoidance, an anxiogenic effect, without affecting escape. Microinjection of the 5-HT1A antagonist WAY-100635 was ineffective. In the elevated T-maze, inhibitory avoidance and escape have been related to generalized anxiety and panic disorders, respectively. Intra-MRN administration of the excitatory aminoacid kainic acid, which non-selectively stimulates 5-HT neurons in this brain area facilitated inhibitory avoidance and impaired escape performance, but also affected locomotion. Intra-MRN injection of WAY-100635, which has a disinhibitory effect on the activity of 5-HT neurons in this midbrain area, only facilitated inhibitory avoidance. Preadministration of WAY-100635 into the DH blocked the behavioral effect of intra-MRN injection of WAY-100635, but not of kainic acid. These results indicate that DH 5-HT1A receptors mediate the anxiogenic effect induced by the selective stimulation of 5-HT neurons in the MRN. (c) 2007 Elsevier B.V. and ECNP. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serotonin (5-HT) can either increase or decrease anxiety-like behaviour in animals, actions that depend upon neuroanatomical site of action and 5-HT receptor subtype. Although systemic studies with 5-HT(2) receptor agonists and antagonists suggest a facilitatory role for this receptor subtype in anxiety, somewhat inconsistent results have been obtained when such compounds have been directly applied to limbic targets such as the hippocampus and amygdala. The present study investigated the effects of the 5-HT(2B/2C) receptor agonist mCPP bilaterally microinjected into the dorsal hippocampus (DH: 0, 0.3 1.0 or 3.0 nmol/0.2 mu l), the ventral hippocampus (VH: 0, 0.3, 1.0 or 3.0 nmol/0.2 mu l) or the amygdaloid complex (0, 0.15, 0.5, 1.0 or 3.0 nmol/0.1 mu l) in mice exposed to the elevated plus-maze (EPM). Test sessions were videotaped and subsequently scored for conventional indices of anxiety (percentage of open arm entries and percentage of open arm time) and locomotor activity (closed arm entries). Results showed that mCPP microinfusions into the DH or VH failed to affect any behavioural measure in the EPM. However, when injected into the amygdaloid complex, the dose of 1.0 nmol of this 5HT(2B/2C) receptor agonist increased behavioural indices of anxiety without significantly altering general activity levels. This anxiogenic-like effect of mCPP was selectively and completely blocked by local injection of a behaviourally-inactive dose of SDZ SER-082 (10 nmol/0.1 mu l), a preferential 5-HT(2C) receptor antagonist. These data suggest that 5HT(2C) receptors located within the amygdaloid complex (but not the dorsal or ventral hippocampus) play a facilitatory role in plus-maze anxiety in mice. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preconditioning-induced ischemic tolerance has been documented in the newborn brain, however, the signaling mechanisms of this preconditioning require further elucidation. The aims of this study were to develop a hypoxic-preconditioning (PC) model of ischemic tolerance in the newborn piglet, which emulates important clinical similarities to human situation of birth asphyxia, and to characterize some of the molecular mechanisms shown to be implicated in PC-induced neuroprotection in rodent models. One day old piglets were subjected to PC (8% O(2)/92% N(2)) for 3 h and 24 h later were exposed to hypoxia-ischemia (HI) produced by a combination of hypoxia (5% FiO(2)) for a period of 30 min and ischemia induced by a period of hypotension (10 min of reduced mean arterial blood pressure; 70% of baseline). Neuropathologic analysis and unbiased stereology, conducted at 24 h, 3 and 7 days of recovery following HI, indicated a substantial reduction in the severity of brain damage in PC piglets compared to non-PC piglets (P<0.05). PC significantly increased the mRNA expression of hypoxia-inducible factor-1 alpha (HIF-1 alpha) and its target gene, vascular endothelial growth factor (VEGF) at 0 h, 6 h, 24 h, 3 and 7 days of recovery. Immunoblot analysis demonstrated that PC resulted in HIF-1 alpha protein stabilization and accumulation in nuclear extracts of cerebral cortex of newborn piglet brain compared to normoxic controls. Protein levels of VEGF increased in a time-dependent manner in both cortex and hippocampus following PC. Double-immunolabeling indicated that VEGF is mainly expressed in neurons, endothelial cells and astroglia. Our study demonstrates for the first time the protective efficacy of PC against hypoxic-ischemic injury in newborn piglet model, which recapitulates many pathophysiological features of asphyxiated human neonates. Furthermore, as has been shown in rodent models of preconditioning, our results suggest that PC-induced protection in neonatal piglets may involve upregulation of VEGF. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative stress is considered a possible molecular mechanism involved in Pb neurotoxicity. Considering the vulnerability of the developing brain to Pb neurotoxicity, this study was carried out to investigate the effects of low-level developmental Pb exposure on brain regions antioxidant enzymes activities. Wister dams were exposed to 500 ppm of Pb, as Pb acetate, or to 660 ppm Na acetate in the drinking water during pregnancy and lactation. The activities of superoxide dismutase (SOD), glutathione peroxidase and glutathione reductase were determined in the hypothalamus, hippocampus and striatum of male pups at 23 (weaned) or 70 days (adult) of age. In the Pb-exposed 23-day-old pups, the activity of SOD was decreased in the hypothalamus. Regarding adults, there was no significant treatment effect in any of the enzymes and regions evaluated. Based on the present results, it seems that oxidative stress due to decreased antioxidant function may occur in weaned rats but it is suggested that this should not be the main mechanism involved in the neurotoxicity of low-level Pb exposure. (C) 2001 Elsevier B.V. Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative damage to biological membranes has been reported as a cause of alterations in many different diseases. We had previously reported lipid peroxidation in the kainic acid model of temporal epilepsy. In this study we evaluated earlier and later modifications in the lipid composition after status epileticus induced by kainic acid. Lipid composition was determined by thin-layer chromatography, in the cortex and hippocampus 12-14 h, 7-8, 75-80, or 140-150 days after the end of status epileticus. In the hippocampus there was a significant change in the lipid protein ratio after status epileticus and this was accompanied by an alteration in lipid composition in all tested times. These results suggested that lipid peroxidation induced by kainic acid could be accompanied by chronic changes in the lipid composition that could be related to the development of seizures.