106 resultados para Hilbert symbol
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In this paper we show that the quaternion orders OZ[ √ 2] ≃ ( √ 2, −1)Z[ √ 2] and OZ[ √ 3] ≃ (3 + 2√ 3, −1)Z[ √ 3], appearing in problems related to the coding theory [4], [3], are not maximal orders in the quaternion algebras AQ( √ 2) ≃ ( √ 2, −1)Q( √ 2) and AQ( √ 3) ≃ (3 + 2√ 3, −1)Q( √ 3), respectively. Furthermore, we identify the maximal orders containing these orders.
Resumo:
We derive the soliton matrices corresponding to an arbitrary number of higher-order normal zeros for the matrix Riemann-Hilbert problem of arbitrary matrix dimension, thus giving the complete solution to the problem of higher-order solitons. Our soliton matrices explicitly give all higher-order multisoliton solutions to the nonlinear partial differential equations integrable through the matrix Riemann-Hilbert problem. We have applied these general results to the three-wave interaction system, and derived new classes of higher-order soliton and two-soliton solutions, in complement to those from our previous publication [Stud. Appl. Math. 110, 297 (2003)], where only the elementary higher-order zeros were considered. The higher-order solitons corresponding to nonelementary zeros generically describe the simultaneous breakup of a pumping wave (u(3)) into the other two components (u(1) and u(2)) and merger of u(1) and u(2) waves into the pumping u(3) wave. The two-soliton solutions corresponding to two simple zeros generically describe the breakup of the pumping u(3) wave into the u(1) and u(2) components, and the reverse process. In the nongeneric cases, these two-soliton solutions could describe the elastic interaction of the u(1) and u(2) waves, thus reproducing previous results obtained by Zakharov and Manakov [Zh. Eksp. Teor. Fiz. 69, 1654 (1975)] and Kaup [Stud. Appl. Math. 55, 9 (1976)]. (C) 2003 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We clarify the structure of the Hilbert space of curved βγ systems defined by a quadratic constraint. The constraint is studied using intrinsic and BRST methods, and their partition functions are shown to agree. The quantum BRST cohomology is non-empty only at ghost numbers 0 and 1, and there is a one-to-one mapping between these two sectors. In the intrinsic description, the ghost number 1 operators correspond to the ones that are not globally defined on the constrained surface. Extension of the results to the pure spinor superstring is discussed in a separate work.
Resumo:
In this paper I discuss Husserl's solution of the problem of imaginary elements in mathematics as presented in the drafts for two lectures he gave in Göttingen in 1901 and other related texts of the same period, a problem that had occupied Husserl since the beginning of 1890, when he was planning a never published sequel to Philosophie der Arithmetik (1891). In order to solve the problem of imaginary entities Husserl introduced, independently of Hilbert, two notions of completeness (definiteness in Husserl's terminology) for a formal axiomatic system. I present and discuss these notions here, establishing also parallels between Husserl's and Hilbert's notions of completeness. © 2000 Kluwer Academic Publishers.
Resumo:
Foram utilizadas 99 vacas prenhes distribuídas em oito grupos que receberam os seguintes tratamentos: grupo I, com 29 vacas não vacinadas e seus bezerros que não receberam probiótico, ficando como controle; grupo II, com 10 vacas vacinadas e seus bezerros que não receberam probiótico; grupos III, IV e V, com 10 animais cada, vacas vacinadas e seus bezerros que receberam probiótico durante 5, 15 e 30 dias, respectivamente; os grupos VI, VII e VIII, com 10 animais cada, vacas não vacinadas e seus bezerros que receberam probiótico durante 5, 15 e 30 dias, respectivamente. Cada animal dos grupos vacinados recebeu duas doses vacinais contendo os pili K99 e A14 de Escherichia coli na dose de 5,0ml por via subcutânea. O probiótico contendo Ruminobacter amylophilum, Ruminobacter succinogenes, Succinovibrio dextrinosolvens, Bacillus cereus, Lactobacillus acidophilus e Streptococcus faecium, na dose de 3,0× 10(8) células vivas (UFC) de cada amostra em 250ml de leite, era adiministrado por via oral. Os animais foram observados diariamente e foram determinados os títulos de anticorpos anti-K99 e anti-A14 no soro e no colostro. Anotaram-se os pesos dos bezerros ao nascimento e aos 30 dias. Os resultados mostraram que a associação de vacina com probiótico administrado por 15 e 30 dias foram os tratamentos mais eficientes no controle da diarréia e ganho de peso.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)