344 resultados para High Performance Liquid Chromatography
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A sensitive, precise, and specific high-performance liquid chromatographic (HPLC) method was developed for the assay of gatifloxacin (GATX) in raw material and tablets. The method validation parameters yielded good results and included the range, linearity, precision, accuracy, specificity, and recovery. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay. The HPLC separation was carried out by reversed-phase chromatography on a C18 absorbosphere column (250 x 4.6 mm id, 5 pm particle size) with a mobile phase composed of acetic acid 50/o--acetonitrile-methanol (70 + 15 + 15, v/v/v) pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 287 nm. The calibration graph for GATX was linear from 4.0 to 14.0 mu g/mL. The interday and intraday precisions (relative standard deviation) were less than 1.05%.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two high-performance liquid chromatographic methods for determination of residual monomer in dental acrylic resins are described. Monomers were detected by their UV absorbance at 230 nm, on a Nucleosil((R)) C-18 (5 mu m particle size, 100 angstrom pore size, 15 x 0.46 cm i.d.) column. The separation was performed using acetonitrile-water (55:45 v/v) containing 0.01% triethylamine (TEA) for methyl methacrylate and butyl methacrylate, and acetonitrile-water (60:40 v/v) containing 0.01% TEA for isobutyl methacrylate and 1,6-hexanediol dimethacrylate as mobile phases, at a flow rate of 0.8 mL/min. Good linear relationships were obtained in the concentration range 5.0-80.0 mu g/mL for methyl methacrylate, 10.0-160.0 mu g/mL for butyl methacrylate, 50.0-500.0 mu g/mL for isobutyl methacrylate and 2.5-180.0 mu g/mL for 1,6-hexanediol dimethacrylate. Adequate assay for intra- and inter-day precision and accuracy was observed during the validation process. An extraction procedure to remove residual monomer from the acrylic resins was also established. Residual monomer was obtained from broken specimens of acrylic disks using methanol as extraction solvent for 2 h in an ice-bath. The developed methods and the extraction procedure were applied to dental acrylic resins, tested with or without post-polymerization treatments, and proved to be accurate and precise for the determination of residual monomer content of the materials evaluated. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
The high performance liquid chromatography (HPLC) technique was applied to measure phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity in soybean (Glycine max L. Merril cv. BR16) roots. t-Cinnamate, the catalytic product of the PAL reaction was quantified at 275 nm by isocratic elution with methanol:water through an ODS(M) column. Comparative experiments were carried out with 1.0 mM ferulic acid, an inducer of PAL activity. The results suggest that liquid chromatography is a rapid and sensitive method to analyze PAL activity in non-purified extract.
Resumo:
Two simple methods were developed to determine, 11 pesticides in coconut water, a natural isotonic drink rich in salts, sugars and vitamins consumed by the people and athletes. The first procedure involves solid-phase extraction using Sep-Pak Vac C-18 disposable cartridges with methanol for elution. Isocratic analysis was carried out by means of high-performance liquid chromatography with ultraviolet detection at 254 nm to analyse captan, chlorothalonil, carbendazim, lufenuron and diafenthiuron. The other procedure is based on liquid-liquid extraction with hexane-dichloromethane (1:1, v/v), followed by gas chromatographic analysis with effluent splitting to electron-capture detection for determination of endosulfan, captan, tetradifon and trichlorfon and thermionic specific detection for determination of malathion, parathion-methyl and monocrotophos. The methods were validated with fortified samples at different concentration levels (0.01-12.0 mg/kg). Average recoveries ranged from 75 to 104% with relative standard deviations between 1.4 and 11.5%. Each recovery analysis was repeated at least five times. Limits of detection ranged from 0.002 to 2.0 mg/kg. The analytical procedures were applied to 15 samples and no detectable amounts of the pesticides were found in any samples under the conditions described. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
A rapid, sensitive and reliable reverse-phase HPLC method was used for the quantitative determination of the anti-fungal and insecticide amides, dihydropiplartine (1), piplartine (2), Delta(alpha,beta)-dihydropiperine (3) and pellitorine (4) in plants in natura, in plantlets in vitro and ex vitro, and in callus of Piper tuberculatum. Well-resolved peaks were obtained with good detection response and linearity in the range of 15.0-3000 mug/mL. The plants in natura contained compounds 1-4, the plantlets ex vitro and in vitro accumulated compounds 1-2 and 1-4, respectively, while only amide 4 was found in callus. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Explants of Maytenus aquifolium were induced to form callus and, subsequently, suspension cultures. The isolation of natural products from callus led to the identification of the cytotoxic triterpene quinonemethides, maitenin (1) and 22 beta-hydroxymaitenin (2), A rapid, sensitive and reliable reversed-phase high-performance liquid chromatography method was developed using a Cls column and isocratic elution for the determination of 1 and 2, the elaborated method gave well-resolved peaks for these compounds with good detection response and linearity in the range of 0.08-72.0 mu g. The quantification of 1 and 2 was performed by an external standard method. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
A series of studies was conducted to establish a methodology for the accurate and efficient determination of betaine in different feed ingredients. The final methodology involves an extraction step in which the feed sample is heated for 3h in a methanolic KOH solution using a Goldfisch apparatus. Impurities are removed by the addition of activated charcoal and concentrated (36%) HCl. After centrifugation the extractant is passed through a strong cation exchange resin (Dowex 50W-X12, H+). The betaine retained in the column is eluted with 1.5 N HCl. A 2 nil aliquot of the elute is air dried and reconstituted with 1 ml of deionised water. HPLC separation with a cation exchange column (Partisil SCX-10) is used for the separation of betaine from other compounds. The mobile phase is kept constant at 50mm KH2PO4 in water, and eluted compounds are detected by UV absorbance (200nm). The flow rate is maintained at 1.5ml min(-1). This assay is very accurate over the range of betaine concentrations from 15 to 650 mug ml(-1), with a lower detection limit in feeds of approximately 500 mug g(-1) when 4g of sample is extracted. Recovery assays done with standard betaine hydrochloride and hard red wheat resulted in a consistent recovery of 80%. Betaine content was quantified in several feed ingredients, including alfalfa (1.77 mg kg(-1)), wheat (3.96 mg kg(-1)), wheat middlings (4.98 mg kg(-1)) and poultry meal (0.77 mg kg(-1)). Betaine in corn and soybean meal was not detectable by this method, even when 16g of sample was used (<125 mg kg(-1)). Betaine present in several feed ingredients should influence choline supplementation to animal feeds and may have implications for human health. (C) 2002 Society of Chemical Industry.
Resumo:
Several clean-up procedures which included the use of glass chromatography columns (silica gel, alumina, Florisil, silanized Celite-charcoal), Sep-Pak cartridges and standard solutions were compared for the determination of the following N-methylcarbamate (NMC) insecticides: aldicarb, carbaryl, carbofuran, methomyl and propoxur. According to recovery results of the compounds after elution in a glass column, the most efficient systems employed 4.6% deactivated alumina and a silanized Celite-charcoal (4:1) as adsorbents, using dichloromethane-methanol (99:1) and toluene-acetonitrile (75:25) mixtures, respectively, as binary eluents. The recoveries of the compounds studied varied from 84 to 120%. Comparable recoveries (75-100%) for Sep-Pak cartridges in normal phase (NH2, CN) and reversed phase (C-8) were observed. Different temperatures were tested during the concentration step in a rotary evaporator, and we verified a strong influence of this parameter on the stability of some compounds, such as carbofuran and carbaryl. Recovery studies employing the best clean up procedures were performed at the Brazilian agricultural level in potato and carrot samples; Validation methodology of the US Food and Drug Administration was adapted for the N-methylcarbamate analysis. Their recoveries ranged between 79 and 93% with coefficients of variation of 2.3-8%. (C) 1998 Elsevier B.V. B.V.
Resumo:
A high-performance liquid chromatography (HPLC) method for the determination of acetaldehyde in fuel ethanol was developed. Acetaldehyde was derivatized with 0.900 mL 2,4-dinitrophenylhydrazine (DNPHi) reagent and 50 mu L phosphoric acid 1 mol L-1 at a controlled room temperature of 15 degrees C for 20 min. The separation of acetaldehyde- DNPH (ADNPH) was carried out on a Shimadzu Shim-pack C-18 column, using methanol/LiCl(aq) 1.0 mM (80/20, v/v) as a mobile phase under isocratic elution and UV-Vis detection at 365 nm. The standard curve of ADNPH was linear in the range 3-300 amg L-1 per injection (20 mu L) and the limit of detection (LOD) for acetaldehyde was 2.03 mu g L-1, with a correlation coefficient greater than 0.999 and a precision (relative standard deviation, RSD) of 5.6% (n=5). Recovery studies were performed by fortifying fuel samples with acetaldehyde at various concentrations and the results were in the range 98.7-102%, with a coefficient of variation (CV) from 0.2% to 7.2%. Several fuel samples collected from various gas stations were analyzed and the method was successfully applied to the analysis of acetaldehyde in fuel ethanol samples.
Resumo:
Five different morphological types of Maytenus ilicifolia of the same age and harvested under the same conditions showed distinct accumulations of some friedo-nor-oleananes. A rapid, sensitive and reliable reverse-phase HPLC method (employing an external standard) was used for the determination of the cytotoxic triterpenoids, 20alpha-hydroxymaytenin, 22beta-hydroxymaytenin, maytenin, celastrol and pristimerin in each of the five types. Well resolved peaks with good detection response and linearity in the range 1.0-100 mug/mL were obtained. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
An analytical method for the determination of aldicarb, and its two major metabolites, aldicarb sulfoxide and aldicarb sulfone in fruits and vegetables is described. Briefly the method consisted of the use of a methanolic extraction, liquid-liquid extraction followed by solid-phase extraction clean-up. Afterwards, the final extract is analyzed by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS). The specific fragment ion corresponding to [M-74](+) and the protonated molecular [M+K](+) ion were used for the unequivocal determination of aldicarb and its two major metabolites. The analytical performance of the proposed method and the results achieved were compared with those obtained using the common analytical method involving LC with post-column fluorescence detection (FL). The limits of detection varied between 0.2 and 1.3 ng but under LC-FL were slightly lower than when using LC-APCI-MS. However both methods permitted one to achieve the desired sensitivity for analyzing aldicarb and its metabolites in vegetables. The method developed in this work was applied to the trace determination of aldicarb and its metabolites in crop and orange extracts. (C) 2000 Elsevier B.V. B.V. All rights reserved.