6 resultados para Graph eigenvalue

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a typical non-symmetrical system with two parallel three phase transmission lines, modal transformation is applied using some examples of single real transformation matrices. These examples are applied searching an adequate single real transformation matrix to two parallel three phase transmission line systems. The analyses are started with the eigenvector and eigenvalue studies, using Clarke's transformation or linear combinations of Clarke's elements. The Z C and parameters are analyzed for the case that presents the smallest errors between the exact eigenvalues and the single real transformation matrix application results. The single real transformation determined for this case is based on Clarke's matrix and its main characteristic is the use of a unique homopolar reference. So, the homopolar mode becomes a connector mode between the two three-phase circuits of the analyzed system. ©2005 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal faceprint has been paramount in the last years. Since we can handle with face recognition using images acquired in the infrared spectrum, an unique individual's signature can be obtained through the blood vessels network of the face. In this work, we propose a novel framework for thermal faceprint extraction using a collection of graph-based techniques, which were never used to this task up to date. A robust method of thermal face segmentation is also presented. The experiments, which were conducted over the UND Collection C dataset, have showed promising results. © 2011 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dental recognition is very important for forensic human identification, mainly regarding the mass disasters, which have frequently happened due to tsunamis, airplanes crashes, etc. Algorithms for automatic, precise, and robust teeth segmentation from radiograph images are crucial for dental recognition. In this work we propose the use of a graph-based algorithm to extract the teeth contours from panoramic dental radiographs that are used as dental features. In order to assess our proposal, we have carried out experiments using a database of 1126 tooth images, obtained from 40 panoramic dental radiograph images from 20 individuals. The results of the graph-based algorithm was qualitatively assessed by a human expert who reported excellent scores. For dental recognition we propose the use of the teeth shapes as biometric features, by the means of BAS (Bean Angle Statistics) and Shape Context descriptors. The BAS descriptors showed, on the same database, a better performance (EER 14%) than the Shape Context (EER 20%). © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for analyzing electromagnetic transients using real transformation matrices in three-phase systems considering the presence of ground wires. So, for the Z and Y matrices that represent the transmission line, the characteristics of ground wires are not implied in the values related to the phases. A first approach uses a real transformation matrix for the entire frequency range considered in this case. This transformation matrix is an approximation to the exact transformation matrix. For those elements related to the phases of the considered system, the transformation matrix is composed of the elements of Clarke's matrix. In part related to the ground wires, the elements of the transformation matrix must establish a relationship with the elements of the phases considering the establishment of a single homopolar reference in the mode domain. In the case of three-phase lines with the presence of two ground wires, it is unable to get the full diagonalization of the matrices Z and Y in the mode domain. This leads to the second proposal for the composition of real transformation matrix: obtain such transformation matrix from the multiplication of two real and constant matrices. In this case, the inclusion of a second matrix had the objective to minimize errors from the first proposal for the composition of the transformation matrix mentioned. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the partition function of the super eigenvalue model satisfies, for finite N (non-perturbatively), an infinite set of constraints with even spins s = 4, 6, . . . , ∞. These constraints are associated with half of the bosonic generators of the super (W∞/2 ⊕ W1+∞/2) algebra. The simplest constraint (s = 4) is shown to be reducible to the super Virasoro constraints, previously used to construct the model.