101 resultados para Grain boundary diffusion
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The present work studied the influence of thermal treatment in oxygen rich atmosphere on heterogenous junctions in Mn-doped SnO2 polycrystalline system presenting varistor behavior. The samples were prepared by conventional oxide mixture methodology, and were submitted to heat treatment in oxygen rich atmosphere at 900 degrees C for 2h. The samples were characterized by X-ray diffraction, scanning electron microscopy, dc and ac electrical measurements. The results showed that there is an evident relationship between the microstructure heterogeneity and non-ohmic electrical properties. It was found that for this SnO2 center dot MnO-based varistor system the heat treatment in oxygen rich atmosphere does not necessarily increase the varistors properties, which was related to the decrease in the grain boundary resistance. The results are compared with Co-doped SnO2 varistors and ZnO based varistors. (C) 2008 WILEY-VCH Verlay GmbH & Co. KGaA, Weinheim.
Resumo:
The relationship between grain-boundary capacitance and extrinsic shallow donors caused by Nb addition to SnO2 center dot COO binary polycrystalline system has been investigated by means of combined techniques such as I-V characteristic response, complex impedance and capacitance analysis and electrostatic force microscopy. The estimated role of the Nb doping is to increase the concentration of shallow donors that are capable of enhancing the electronic donation to grain-boundary acceptors. This effect leads to the formation of potential barriers at grain boundaries with a simultaneous increase of grain-boundary capacitance and non-Ohmic features of the polycrystalline device doped with Nb atoms.
Resumo:
Structural heterogeneities in SnO2.CoO-based varistors were analyzed by transmission electron microscopy. In SnO2.CoO-based system doped with La2O3 and Pr2O3 two kinds of precipitate phases at grain boundary region were found. Using energy dispersive spectrometry they were found to be Co2SnO4 and Pr2Sn2O7, presenting a defined crystalline structure. It was also identified that such precipitate phases are mainly located in triple-junctions of the microstructure. HRTEM analysis revealed the existence of other two types of junctions, one as being homo-junctions of SnO2 grains and other due to twin grain boundaries inside the SnO2.CoO grain. The role of these types of junction in the overall nonlinear electrical features is also discussed. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The electrical properties of the grain boundary region of electroceramic sensor temperature based on inverse spinel Zn7Sb2O12 were investigated at high temperature. The zinc antimoniate was synthesized by a chemical route based on the modified Pechini method. The electric properties of Zn7Sb2O12 were investigated by impedance spectroscopy in the frequency range from 5 Hz to 13 MHz and from 250 up to 600 degreesC. The grain boundary conductivity follows the Arrhenius law, with two linear branches of different slopes. These branches exhibit activation energies with very similar values; the low-temperature (less than or equal to350 degreesC) and high-temperature (greater than or equal to400 degreesC) regions are equal to 1.15 and 1.16 eV, respectively. Dissimilar behavior is observed on the relaxation time (tau) curve as a function of temperature, where a single slope is identified. The negative temperature coefficient parameters and nature of the polarization phenomenon of the grain boundary are discussed. (C) 2003 American Institute of Physics.
Resumo:
Fractal dimensions of grain boundary region in doped SnO2 ceramics were determined based on previously derived fractal model. This model considers fractal dimension as a measure of homogeneity of distribution of charge carriers. Application of the derived fractal model enables calculation of fractal dimension using results of impedance spectroscopy. The model was verified by experimentally determined temperature dependence of the fractal dimension of SnO2 ceramics. Obtained results confirm that the non-Debye response of the grain boundary region is connected with distribution of defects and consequently with a homogeneity of a distribution of the charge carriers. Also, it was found that C-T-1 function has maximum at temperature at which the change in dominant type of defects takes place. This effect could be considered as a third-order transition.
Resumo:
The electric and dielectric properties of the grain boundary of Na0.85Li0.15NbO3 lead-free ferroelectric-semiconductor perovskite were investigated. The impedance spectroscopy was carried out as a function of a thermal cycle. The sodium lithium niobate was synthesized by a chemical route based on the evaporation method. Dense ceramic, relative density of 97%, was prepared at 1423 K for 2 h in air atmosphere. ac measurements were carried out in the frequency range of 5 Hz-13 MHz and from 673 to 1023 K. Theoretical adjust of the impedance data was performed to deriving the electric parameters of the grain boundary. The electric conductivity follows the Arrhenius law, with activation energy values equal to 1.55 and 1.54 eV for heating and cooling cycle, respectively. The nonferroelectric state of the grain boundary and its correlation with symmetry are discussed in the temperature domain. (C) 2003 American Institute of Physics.
Resumo:
The effect of calcination temperature during the formation of the solid solution Sn(0.9)Ti(0.1)O(2) doped with 1.00 mol % CoO and 0.05 mol % Nb(2)O(5) is presented. The structural characteristics of this system were studied using X-ray diffraction, and the changes in phase formation were analyzed using the Rietveld method. With an increase in calcination temperature, there is increasing miscibility of Ti into the (Ti,Sn)O(2) phase and near 1000 degrees C, and the remaining TiO(2) (anatase) was transformed into the rutile phase. The sintering process, monitored using dilatometry, suggests two mass transport mechanisms, one activated close to 900 degrees C associated with the presence of TiO(2) (anatase) and the second mechanism, occurring between 1200 and 1300 degrees C, is attributed to a faster grain boundary diffusion caused by oxygen vacancies. (C) 2008 International Centre for Diffraction Data.
Resumo:
The sintering of ZrO2. MgO . ZnO powder has been investigated by TMA (Thermal Mechanical Analyser) and its phases analysed by XRD (X-ray diffraction pattern). The data obtained from sintering was studied by the Bannister equation and its dominant sintering mechanism was calculated. It was observed that the ZnO addition in the ZrO2. MgO solid solution lead to increased zirconia stabilization, According to the vacancies model, the ZnO addition did not lead to zirconia phases stabilization (PSZ). An analysis of the rate control in the initial stage of the sintering (region I) showed a mechanism of volume diffusion type. In other regions (regions II and III), the grain growth did lead to the Bannister equation deviation, which was observed by SEM (Scanning Electron Microscopy). These results were different from those demonstrated by other authors who studied the ZrO2. Y2O3 solid solution and obtained a mechanism of grain boundary diffusion type. (C) 1999 Published by Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
SnO2-based varistors are strong candidates to replace the ZnO-based varistors due to ordering fewer additives to improve its electrical behavior as well as by showing similar nonlinear characteristics of ZnO varistors. In this work, SnO2-nanoparticles based-varistors with addition of 1.0 %mol of ZnO and 0.05 %mol of Nb2O5 were synthesized by chemical route. SnO2.ZnO.Nb2O5-films with 5 μm of thickness were obtained by electrophoretic deposition (EPD) of the nanoparticles on Si/Pt substrate from alcoholic suspension of SnO2-based powder. The sintering step was carried out in a microwave oven at 1000 °C for 40 minutes. Then, Cr3+ ions were deposited on the films surface by EPD after the sintering step. Each sample was submitted to different thermal treatments to improve the varistor behavior by diffusion of ions in the samples. The films showed a nonlinear coefficient (α) greater than 9, breakdown voltage (VR) around 60 V, low leakage current (IF ≈ 10-6 A), height potential barrier above 0.5 eV and grain boundary resistivity upward of 107 Ω.cm.
Resumo:
Due to their low cost and high resistance to corrosion, ceramic crucibles can be used for the melting of PBG glasses (PbO-BiO 1.5GaO 1.5). These glasses present good window transmission from ultra-violet to infrared, making their use as optical fibres promising. However, their disadvantage is the high reactivity, leading to the corrosion of different crucibles, including gold and platinum ones. In this work, the corrosion of Al 2O 3, SnO 2 and ZrO 2 crucibles after melting at temperatures varying from 850 to 1000°C, was evaluated by Scanning Electronic Microscopy (SEM) in conjunction with microanalysis by EDS. The lead diffusion profile in the crucible material was obtained. Diffusion coefficients were calculated according to the Fick and Fisher theories. Results indicated that the different crucibles presented similar behaviour: in the region near the interface, diffusion occurs in the volumetric way and in regions away from the interface, diffusion occurs through grain boundary.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Addition of 0.5 mol% of CoO into SnO2 promotes densification of this oxide to 99% of the theoretical density during sintering. TEM in this system reveals that after sintering at 1210 degrees C a secondary phase of Co2SnO4 is precipitated at the SnO2 grain boundaries during cooling. This phase is formed by diffusion of Co ions from the bulk to the grain boundary during sintering leaving needle-like defects at the grain bulk. The high resolution TEM micrograph of this system sintered at 1210 degrees C and 1400 degrees C showed an amorphous grain boundary region low in cobalt, indicating that the Co2SnO4 phase is precipitated from this region. (C) 1999 Elsevier B.V. Limited and Techna S.r.l. All rights reserved.
Resumo:
Tin oxide is an n-type semiconductor material with a high covalent behavior. Mass transport in this oxide depends on the surface state promoted by atmosphere or by the solid solution of a non-isovalent oxide doping The sintering and grain growth of this type of oxide powder is then controlled by atmosphere and by extrinsic oxygen vacancy formation. For pure SnO2 powder the surface state depends only on the interaction of atmosphere molecules with the SnO2 surface. Inert atmosphere like argon or helium promotes oxygen vacancy formation at the surface due to reduction of SnO2 to SnO at the surface and liberation of oxygen molecules forming oxygen vacancies. As consequence surface diffusion is enhanced leading to grain coarsening but no densification. Oxygen atmosphere inhibits the SnO2 reduction decreasing the surface oxygen vacancy concentration. Addition of dopants with lower valence at sintering temperature creates extrinsic charged oxygen vacancies that promote mass transport at grain boundary leading to densification and grain growth of this polycrystalline oxide.