27 resultados para Gel strength

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this work was to investigate the viscoelastic properties of aqueous suspensions of crude collagen powder extracted from bovine hides and nonsubmitted to the hydrolysis reaction that leads to gelatin. The studied variables included the collagen concentration and the addition of xanthan gum or maltodextrin at varied concentrations during heating/cooling of the mixtures. Differential scanning calorimetry thermograms showed that the addition of polysaccharides decreased the endothermic peak areas observed at the denaturation temperature of collagen. The rheological properties of the pure collagen suspensions were highly dependent on concentration: 4% and 6% collagen suspensions presented a great increase in the storage modulus after heating/cooling, whereas for concentrations of 8% and 10% G' decreased during heating and did not recover its original value after heating/cooling. The frequency sweeps showed that the thermal treatment was responsible by the strengthening of the interactions that formed the polymer network. Addition of 0.1% xanthan gum to collagen suspensions increased the gel strength, especially after heating/cooling of the system, whereas increasing gum concentration to 0.3% resulted in a weaker gel, which could indicate thermodynamic incompatibility between the biopolymers. Mixtures of collagen and maltodextrin resulted in more fluid structures than those obtained with pure collagen at the same collagen concentration and the range of temperatures in which these mixtures behaved as a gel decreased with increasing concentrations of both collagen and maltodextrin, suggesting incompatibilities between the biopolymers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: This study evaluated the effect of bleaching gel containing 10%, 15% and 20% carbamide peroxide (CP) on the bond strength of dental enamel or dentin and resin composite restorations.Methods: The buccal surfaces of 12 bovine tooth crowns were conditioned with 37% phosphoric acid, and the adhesive resin Single Bond 2 and the resin composite Filtek Z350 were used to perform the restorations. The blocks were sectioned to obtain bar specimens. Each specimen group (enamel-E, dentin-D) was divided into four subgroups (n=15): S-artificial saliva; 10-10% CP bleaching; 15-15% CP bleaching; 20-20% CP bleaching. CP was applied for six hours daily for two weeks. The specimens were submitted to the a test in a universal testing machine. The data were analyzed by one-way ANOVA and the Tukey post-hoc test and a correlation analysis (r) was performed.Results: For Group E, the mean value (+/- standard-deviation) was 21.86 (+/- 6.03)a, 18.91 (+/- 8.31)ab, 15.43 (+/- 7.44)b and 10.6 (+/- 4.94)c for ES, E10, E15 and E20, respectively. For Group D, the alpha values were 34.73 (+/- 4.68)a, 35.12 (+/- 13.43)a, 29.67 (+/- 6.84)ab and 24.56 (+/- 6.54)b for DS, D10, D15 and D20, respectively. A negative correlation between the CP concentration and mean values was observed for both the enamel (r=-0.95) and dentin (r=-0.85) groups.Conclusion: In the current study, the bond strength of the restoration to enamel and the restoration to dentin were influenced by the application of CP and was dependent on the CP concentration in the bleaching gel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigated the effect of 16% carbamide peroxide (Whiteness Perfect/FGM) on the Vickers microhardness and flexural strength of the restorative composites Filtek Z100 (hybrid), Filtek Z350 (nanofill), Brilliant (micro-hybrid) and Opallis (micro-hybrid). Discshaped (4×2 mm; n=5) and bar-shaped (12×2×1 mm; n=10) specimens of each restorative material were randomly divided into 2 groups: (G1) 16 weeks stored in distilled water; (G2) 16 weeks stored in distilled water, with 16% carbamide peroxide application during 6 h per day for the last 4 weeks. The mechanical properties were evaluated using a Vickers microhardness tester and a mechanical testing machine. Data were analyzed by twoway ANOVA and Tukey's (HSD) post-hoc test (α=0.05). Filtek Z100 presented the highest microhardness value, followed by Filtek Z350 and finally by Brilliant and Opallis (p=0.00). Filtek Z100 and Brilliant exhibited the highest flexural strength value, followed by Filtek Z350 and Opallis (p=0.00). Bleaching treatment decreased significantly microhardness of Brilliant and Opallis (p=0.00). The flexural strength of all studied materials was not affected by the home bleaching (p=0.28).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: This study investigated the effect of relining, water storage and cyclic loading on the ultimate flexural strength (FSU) and on the flexural strength at the proportional limit (FSPl) of a denture base acrylic resin (Lucitone 550-L).Methods: Rectangular bars of L were made (64 mm x 10 mm x 2 mm) and relined (1.3 mm) with four relining resins (Kooliner-K, Ufi Gel Hard-UGH, Tokuso Rebase Fast-TR and New Truliner-NT). In addition, specimens relined with L and intact L specimens were made (64 mm x 10 mm x 3.3 mm). A three-point flexural test was applied on the specimens (n = 10) after (1) polymerization; (2) water storage (30 days); (3) cyclic loading (10,000 cycles at 5 Hz) and (4) water storage (30 days) + cyclic loading. Data (MPa) were analyzed with three-way ANOVA and Tukey's HSD tests (alpha = 0.05). To test for a possible correlation between FSU and FSPl, a linear regression coefficient 'r' was calculated.Results: After water storage, L-UGH and L-TR demonstrated an increased FSU (41.4950.64 MPa and 49.95-57.36 MPa, respectively) (P < 0.05). Only L-TR demonstrated an increased FSPl (20.58-24.21 MPa) after water storage (P < 0.05). L-L had the highest FSU (between 78.57 and 85.09 MPa) and FSPl (between 31.30 and 34.17 MPa) (P < 0.05). The cyclic loading decreased the FSU and FSPl of all materials (P < 0.05). Regression analysis showed a strong linear correlation between the two variables (r = 0.941).Conclusions: Water storage improved the FSU of L-UGH and L-TR and the FSPl of L-TR. L-L produced the highest FSU and FSPl. The FSU and FSPl of all materials were detrimentally influenced by cyclic loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To evaluate the effect of microwave disinfection on the flexural strength and Vickers hardness of 4 autopolymerized resins (Kooliner [K], Tokuso Rebase Fast [T], Ufi Gel Hard [U], and New Truliner [N]) and 1 denture base resin (Lucitone 550 [L]). Method and Materials: For each material, 48 specimens (64 x 10 x 3.3 mm) were made and divided into 6 equal groups (n = 8). In the control group, specimens were untreated. Before testing, specimens were immersed in 200 mL of distilled water and submitted to disinfection for 1 of the following irradiation times: 1, 2, 3, 4, or 5 minutes. The irradiation procedure was performed twice. The flexural strength was determined using a testing machine MTS-810 and measurements of Vickers hardness were made on Micromet 2100. The values were submitted to ANOVA and Tukey's test (P = .05). Results: The K material showed a significant increase (P = .0010) in flexural strength following 5 minutes of disinfection compared to control specimens. The flexural strength mean values of materials T, U, and N were not significantly affected (P > .05) by disinfection. Compared to the control group, the K material showed a significant increase in hardness (P < .001) following disinfection for 3, 4, and 5 minutes. For material U, disinfection for 4 and 5 minutes produced specimens with significantly increased hardness values (P < .001) compared to the control group. For material N, disinfection for 5 minutes resulted in significantly higher hardness values (P < .001) than the control group. Conclusion: Regardless of the irradiation time, the flexural strength and hardness of the materials evaluated were not detrimentally affected by microwave disinfection. (Quintessence Int 2008;39:833-840)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the influence of microwave disinfection on the strength of intact and relined denture bases. Water sorption and solubility were also evaluated. A heat-polymerized acrylic resin (Lucitone 550) was used to construct 4-mm-thick (n = 40) and 2-mm-thick (n = 160) denture bases. Denture bases (2mm) were relined with an autopolymerizing resin (Tokuso Rebase Fast, Ufi Gel Hard, Kooliner, or New Truliner). Specimens were divided into four groups (n = 10): without treatment, one or seven cycles of microwave disinfection (650 W for 6 min), and water storage at 37 degrees C for 7 days. Specimens were vertically loaded (5 mm/min) until failure. Disc-shaped specimens (50 min x 0.5 mm) were fabricated (n = 10) to evaluate water sorption and solubility. Data on maximum fracture load (N), deflection (%), and solubility (%) were analyzed by two-way analysis of variance and Student-Newman-Keuls tests (alpha = 0.05). One cycle of microwave disinfection decreased the deflection at fracture and fracture energy of Tokuso Rebase Fast and New Truliner specimens. The strength of denture bases microwaved daily for 7 days was similar to the strength of those immersed in water for 7 days. Microwave disinfection increased the water sorption of all materials and affected the solubility of the reline materials. (C) 2007 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-curvature and stabilized vesicles of dioctadecyldimethylammonium bromide (DODABr) can be formed spontaneously in aqueous electrolytic solution. It is shown by cryo-transmission electron microscopy that 5.0 mM DODABr molecules associate in water at a temperature above its gel-to-liquid-crystalline phase transition temperature (T(m)approximate to45 degreesC) in a variety of complex bilayer structures. However, in the presence of NaCl the preferred structures formed are unilamellar and bilamellar vesicles with high curvature and the dispersion is polydisperse in size and geometry, but the main vesicle population contains spherical, flattened and smoothed structures. It is, however, less polydisperse than the corresponding salt-free dispersion, and the size polydispersity and the vesicle curvature radius tend to decrease with NaCl concentration. Long cylindrical bilamellar vesicles, with a very thin water layer separating the bilayers are also formed in the presence of 10 mM NaCl. The effect of the ionic strength on T-m, obtained by differential scanning calorimetry, is shown to depend on the nature of the counterion: Br- decreases, whereas Cl- increases Tm of DODABr, indicating different affinity of these counterions for the vesicle surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: This study evaluated the effect of cutting initiation location and cutting speed on the bond strength between resin cement and feldspathic ceramic.Materials and Methods: Thirty-six blocks (6.4 x 6.4 x 4.8 mm) of ceramic (Vita VM7) were produced. The ceramic surfaces were etched with 10% hydrofluoric acid gel for 60 s and then silanized. Each ceramic block was placed in a silicon mold with the treated surface exposed. A resin cement (Variolink II) was injected into the mold over the treated surface and polymerized. The resin cement-ceramic blocks were divided into two groups according to experimental conditions: a) cutting initiation location - resin cement, ceramic and interface; and b) cutting speed - 10,000, 15,000, and 20,000 rpm. The blocks were sectioned to achieve non-trimmed bar specimens. The microtensile test was performed in a universal testing machine (1 mm/min). The failure modes were examined using an optical light microscope and SEM. Bond strength results were analyzed using one-way ANOVA and Tukey's test (alpha = 0.05).Results: Significant influences of cutting speed and initiation location on bond strength (p < 0.05) were observed. The highest mean was achieved for specimens cut at 15,000 rpm at the interface (15.12 +/- 5.36 MPa). The lowest means were obtained for specimens cut at the highest cutting speed in resin cement (8.50 +/- 3.27 MPa), and cut at the lowest cutting speed in ceramic (8.60 +/- 2.65MPa). All groups showed mainly mixed failure (75% to 100%).Conclusion: The cutting speed and initiation location are important factors that should be considered during specimen preparation for microtensile bond strength testing, as both may influence the bond strength results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statement of problem. Microwave postpolymerization has been Suggested as a method to improve the mechanical strength of repaired denture base materials. However, the effect of microwave heating oil the flexural strength of the autopolymerizing denture reline resins has not been investigated.Purpose. This study analyzed the effect of microwave postpolymerization on the flexural strength of 4 autopolymerizing reline resins (Duraliner II, Kooliner, Ufi Gel Hard, and Tokuso Rebase Fast) and 1 heat-polymerized resin (Lucitone 550).Material and methods. For each material, 80 specimens (64 X 10 X 3.3 mm) were polymerized according to the manufacturer's instructions and divided into 10 groups (n = 8). Control group specimens remained as processed. Before testing, the specimens were Subjected to postpolymerization in a microwave oven using different power (500, 5,50, or 650 W) and time (3, 4, or 5 Minutes) settings. Load measurements (newtons) were made at a crosshead speed of 5 mm/min using a 3-point bending device with a span of 50 mill. The flexural strength values were calculated in MPa. Data analyses included 3-way and 2-way analysis of variance and the Tukey Honestly Significant Difference test (alpha=.05).Results. The flexural strengths of resins Duraliner 11 and Kooliner were significantly increased (P=.0015 and P=.0046, respectively) with the application of microwave irradiation using different time/power combinations. The materials Lucitone 550, Tokuso Rebase Fast, and Ufi Gel Hard demonstrated no significant strength improvement compared to the corresponding control. Only after microwave postpolymerization irradiation for 3 minutes at 550 W did Lucitione 550 show significantly higher flexural strength than Tokuso Rebase Fast and Ufi Gel Hard relining resins.Conclusion. Microwave postpolymerization irradiation can be an effective method for increasing the flexural strength of Duraliner II (at 650 W) and Kooliner (at 550 W and 650 W for 5 minutes).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. This study evaluated the durability of bond strength between resin cement and a feldspathic ceramic submitted to different etching regimens with and without silane coupling agent application.Methods. Thirty-two blocks (6.4 mm x 6.4 mm x 4.8 mm) were fabricated using a microparticulate feldspathic ceramic (Vita VM7), ultrasonically cleaned with water for 5 min and randomly divided into four groups, according to the type of etching agent and silanization method: method 1, etching with 10% hydrofluoric (HF) acid gel for I min + silanization; method 2, HF only; method 3, etching with 1.23% acidulated phosphate fluoride (APF) for 5 min + silanization; method 4, APF only. Conditioned blocks were positioned in their individual silicone molds and resin cement (Panavia F) was applied on the treated surfaces. Specimens were stored in distilled water (37 degrees C) for 24 h prior to sectioning. After sectioning the ceramic-cement blocks in x- and Y-axis with a bonded area of approximately 0.6 mm(2), the microsticks of each block were randomly divided into two storage conditions: Dry, immediate testing; TC, thermal cycling (12,000 times) + water storage for 150 d, yielding to eight experimental groups. Microtensile bond strength tests were performed in universal testing machine (cross-head speed: 1 mm/min) and failure types were noted. Data obtained (MPa) were analyzed with three-way ANOVA and Tukey's test (alpha = 0.05).Results. Significant influence of the use of silane (p < 0.0001), storage conditions (p = 0.0013) and surface treatment were observed (p = 0.0014). The highest bond strengths were achieved in both dry and thermocycled conditions when the ceramics were etched with HF acid gel and silanized (17.4 +/- 5.8 and 17.4 +/- 4.8 MPa, respectively). Silanization after HF acid gel and APT treatment increased the results dramatically (14.5 +/- 4.2-17.4 +/- 4.8 MPa) compared to non-silanized groups (2.6 +/- 0.8-8.9 +/- 3.1 MPa) where the failure type was exclusively (100%) adhesive between the cement and the ceramic.Significance. Silanization of the feldspathic ceramic surface after APF or HF acid etching increased the microtensile bond strength results significantly, with the latter providing higher results. Long-term thermocycling and water storage did not decrease the results in silanized groups. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: This study assessed the shear bond strength of 4 hard chairside reline resins (Kooliner, Tokuso Rebase Fast, Duraliner II, Ufi Gel Hard) to a rapid polymerizing denture base resin (QC-20) processed using 2 polymerization cycles (A or B), before and after thermal cycling. Materials and Methods: Cylinders (3.5 mm x 5.0 mm) of the reline resins were bonded to cylinders of QC-20 polymerized using cycle A (boiling water-20 minutes) or B (boiling water; remove heat-20 minutes; boiling water-20 minutes). For each reline resin/polymerization cycle combination, 10 specimens (groups CAt e CBt) were thermally cycled (5 and 55°C; dwell time 30 seconds; 2,000 cycles); the other 10 were tested without thermal cycling (groups CAwt ad CBwt). Shear bond tests (0.5 mm/min) were performed on the specimens and the failure mode was assessed. Data were analyzed by 3-way ANOVA and Newman-Keuls post-hoc test (α=.05). Results: QC-20 resin demonstrated the lowest bond strengths among the reline materials (P<.05) and mainly failed cohesively. Overall, the bond strength of the hard chairside reline resins were similar (10.09±1.40 to 15.17±1.73 MPa) and most of the failures were adhesive/cohesive (mixed mode). However, Ufi Gel Hard bonded to QC-20 polymerized using cycle A and not thermally cycled showed the highest bond strength (P<.001). When Tokuso Rebase Fast and Duraliner II were bonded to QC-20 resin polymerized using cycle A, the bond strength was increased (P=.043) after thermal cycling. Conclusions: QC-20 displayed the lowest bond strength values in all groups. In general, the bond strengths of the hard chairside reline resins were comparable and not affected by polymerization cycle of QC-20 resin and thermal cycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The effect of water immersion on the shear bond strength (SBS) between 1 heat-polymerizing acrylic resin (Lucitone 550-L) and 4 autopolymerizing reline resins (Kooliner-K, New Truliner-N, Tokuso Rebase Fast-T, Ufi Gel Hard-U) was investigated. Specimens relined with resin L were also evaluated. Materials and Methods: One hundred sixty cylinders (20 × 20 mm) of L denture base resin were processed, and the reline resins were packed on the prepared bonding surfaces using a split-mold (3.5 × 5.0 mm). Shear tests (0.5 mm/min) were performed on the specimens (n = 8) after polymerization (control), and after immersion in water at 37°C for 7, 90, and 180 days. All fractured surfaces were examined by scanning electron microscopy (SEM) to calculate the percentage of cohesive fracture (PCF). Shear data were analyzed with 2-way ANOVA and Tukey's test; Kruskall-Wallis test was used to analyze PCF data (α = 0.05). Results: After 90 days water immersion, an increase in the mean SBS was observed for U (11.13 to 16.53 MPa; p < 0.001) and T (9.08 to 13.24 MPa, p = 0.035), whereas resin L showed a decrease (21.74 MPa to 14.96 MPa; p < 0.001). The SBS of resins K (8.44 MPa) and N (7.98 MPa) remained unaffected. The mean PCF was lower than 32.6% for K, N, and T, and higher than 65.6% for U and L. Conclusions: Long-term water immersion did not adversely affect the bond of materials K, N, T, and U and decreased the values of resin L. Materials L and U failed cohesively, and K, N, and T failed adhesively. © 2007 by The American College of Prosthodontists.