14 resultados para Food packaging
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A gas chromatographic method to determine caprolactam in multilayer PA-6 films used for meat foodstuffs and cheese was developed and validated. A wide linear range (0.8-400 mu g/ml), RSD <= 4.1% and recovery higher than 90.0% were obtained for the chromatographic system, while precision and accuracy of the method showed RSD <= 3.8%, recovery from 95.5-100.0% and LOQ of 32 mu g/g. Irradiated (3, 7 and 12 kGy) and non-irradiated commercial films were analyzed. Most of them increased caprolactam levels with the increase of irradiation doses. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This research work develops new methods to produce biodegradable starch-based trays for the purpose of replacing expanded polystyrene in the food packaging market. The starch based biopolymers present several drawbacks like poor mechanical properties and very high density. In order to overcome these drawbacks two research lines have been set up: blending thermoplastic starch with biobased reinforcements from agricultural wastes like barley straw and grape wastes, and testing the foamability of these materials with a Microwave-foaming method.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Optically transparent membranes from bacterial cellulose (BC)/polycaprolactone (PCL) have been prepared by impregnation of PCL acetone solution into dried BC membranes. UV-Vis measurements showed an increase on transparency in BC/PCL membrane when compared with pristine BC. The good transparency of the BC/PCL can be related to the presence of BC nanofibers associated with deposit of PCL nano-sized spherulites which are smaller than the wavelength of visible light and practically free of light scattering. XRD results show that cellulose type I structure is preserved inside the BC/PCL membrane, while the mechanical properties suggested indicated that PCL acts as a plasticizer for the BC membrane. The novel BC/PCL membrane could be used for preparation of fully biocompatible flexible display and biodegradable food packaging.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Biodegradable polymers are starting to be introduced as raw materials in the food-packaging market. Nevertheless, their price is very high. Starch, a fully biodegradable and bioderived polymer is a very interesting alternative due to its very low price. However, the use of starch as the polymer matrix for the production of rigid food packaging, such as trays, is limited due to its poor mechanical properties, high hidrophilicity and high density. This work presents two strategies to overcome the poor mechanical properties of starch. First, the plasticization of starch with several amounts of glycerol to produce thermoplastic starch (TPS) and second, the production of biocomposites by reinforcing TPS with promising fibers, such as barley straw and grape waste. The mechanical properties obtained are compared with the values predicted by models used in the field of composites; law of mixtures, Kerner-Nielsen and Halpin-Tsai. To evaluate if the materials developed are suitable for the production of food-packaging trays, the TPS-based materials with better mechanical properties were compared with commercial grades of oil-based polymers, polypropylene (PP) and polyethylene-terphthalate (PET), and a biodegradable polymer, polylactic acid (PLA).
Resumo:
The packaging often presents faults that difficult the communication between product and consumer. The aim of this research is to study the interaction between a group of elderly people with five food packagings, that being illinterpreted, can bring them health problems. The results of this study evidence the importance of ergonomics in graphic design for food packaging.
Resumo:
Tinuvin P migration from Polyethyleneterephthalate (PET) bottles was investigated using several fatty-food simulants such as olive oil, soybean oil, n-heptane and iso-octane, at exposure conditions of 2-10 days at 40 degrees C (total immersion). The stability of several UV stabilizers (BHT, Cyasorb UV 5411, Tinuvin P, Tinuvin 326 and Tinuvin 327) in n-heptane and iso-octane was also studied. After 10 days at 40 degrees C, losses of 6% and 20% in iso-octane and n-heptane respectively, were verified for Tinuvin P. Other UV stabilizers at the same experimental conditions showed higher losses (up to 30% for Tinuvin 327). These results confirm that, when carrying out specific migration studies, the stability of the substance of interest should be established in the food simulant to avoid underestimating the real migration behaviour. In order to quantify UV stabilizer migration, n-heptane and iso-octane solutions were concentrated and directly analysed by SIM mode GC-MS. For olive and soybean oils, Tinuvin P was isolated using size-exclusion chromatography and quantified by SIM mode GC-MS. Iso-octane proved to be a move suitable fatty-food simulant than n-heptane for the migration study of Tinuvin P from PET. Higher levels of Tinuvin P migrated to olive and soybean oils rather than to n-heptane. These results suggest that the MERCOSUL recommended official methods for specific migration studies should be revised since the migration levels using n-heptane as a fatty-food simulant could be underestimated when compared to edible oils. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)