78 resultados para Film thickness
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report on the use of dynamic scale theory and fractal analyses in the Study of distinct growth stages of layer-by-layer (LBL) films of poly(allylamine hydrochloride) (PAH) and a side-chain-substituted azobenzene copolymer (Ma-co-DR13). The LBL films were adsorbed oil glass substrates and characterized with atomic force microscopy with the Ma-co-DR13 at the top layer. The ganular morphology exhibited by the films allowed the observation of the growth process inside and outside the grains. The growth outside the grains was found to follow the Kardar-Parisi-Zhang model, with fractal dimensions of ca. 2.6. One could expect that inside the grains the morphology would be close to a Euclidian surface with fractal dimension of ca. 2 for any growth stage. The latter, however, was observed only for thicker films containing more than 10 bilayers. For thinner films the morphology was well described by a self-affine fractal. Such dependence of the growth behavior with the film thickness is associated with a more complete coverage of adsorption sites in thicker films due to diffusion of polymer molecules. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Purpose: The aim of this study was to evaluate the fracture resistance of ceramic plates cemented to dentin as a function of the resin cement film thickness. Materials and Methods: Ceramic plates (1 and 2 mm thicknesses) were cemented to bovine dentin using resin composite cement. The film thicknesses used were approximately 100, 200, and 300 μm. Noncemented ceramic plates were used as control. Fracture loads (N) were obtained by compressing a steel indenter in the center of the ceramic plates. ANOVA and Tukey tests (α = 0.05) were used for each ceramic thickness to compare fracture loads among resin cement films used. Results: Mean fracture load (N) for 1-mm ceramic plates were: control - 26 (7); 100 μm - 743 (150); 200 μm - 865 (105); 300 μm - 982 (226). Test groups were significantly different from the control group; there was a statistical difference in fracture load between groups with 100 and 300 μm film thicknesses (p < 0.01). Mean fracture load for 2-mm ceramic plates were: control - 214 (111); 100 μm - 1096 (341); 200 μm - 1067 (226); 300 μm - 1351 (269). Tested groups were also significantly different from the control group (p < 0.01). No statistical difference was shown among different film thicknesses. Conclusions: Unluted specimens presented significantly lower fracture resistance than luted specimens. Higher cement film thickness resulted in increased fracture resistance for the 1-mm ceramic plates. Film thickness did not influence the fracture resistance of 2-mm porcelain plates. Copyright © 2007 by The American College of Prosthodontists.
Resumo:
The aim of the present study was to evaluate the effect of thermocycling (TC) on the microtensile bond strength (microTBS) of two luting agents to feldspathic ceramic and to measure their film thickness (FT). For the microTBS test, sixteen blocks (6.4 x 6.4 x 4.8 mm) were fabricated using a feldspathic ceramic, etched with 10% hydrofluoric acid, rinsed and treated with the silane agent. The ceramic blocks were divided into two groups (n= 8): Gr1: dual-cured resin cement and Gr2: flowable resin. The luting agents were applied on the treated surfaces. Microsticks (1 +/-0. 1mm2) were prepared and stored under two conditions: dry, specimens immediately submitted to the microTBS test, and TC (6,000 cycles; 5 degrees C-55 degrees C). The microTBS was evaluated using a universal testing machine (1 mm/min). The microTBS data (MPa) were submitted to two-way ANOVA and Tukey' test (5%). For the FT test (ISO 4049), 0.05 ml of each luting agent (n=8) was pressed between two Mylar-covered glass plates (150 N) for 180 seconds and light polymerized. FT was measured using a digital paquimeter (Model 727-2001). The data (mm) were submitted to one-way ANOVA. The luting cement did not influence the microTBS results (p= 0.4467). Higher microtensile bond values were found after TC (20.5 +/- 8.6 MPa) compared to the dry condition (13.9 +/- 4. 7MPa), for both luting agents. The luting agents presented similar film thicknesses: Gr1- 0.052 +/- 0.016 mm; Gr2-0.041 +/- 0.003 mm. The luting agents presented similar film thickness and microTBS values, in dry and TC conditions and TC increased the bond strength regardless of the luting agent.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Strontium titanate (SrTiO3) thin films were prepared by dip-coating Si(111) single-crystal substrates in citrate solutions of ethylene glycol, considering several citric acid/ethylene glycol (CA/EG) ratios. Measurements of intrinsic viscosity indicate that increasing the amount of EG increases the precursors' polymeric chains and increases the weight loss. After deposition the substrates were dried on a hotplate (approximate to 150 degrees C); this was followed by heat treatment at temperatures ranging from 500 to 700 degrees C using heating and cooling rates of 1 degrees C min(-1). SEM and optical microscopy investigations of the sintered films obtained from different CA/EG ratios indicate that there is a critical thickness above which the films present cracks. This critical thickness for SrTiO3 films deposited on the Si(111) substrate is about 150 nm, Measurements of crack spacing as a function of film thickness indicate that the origin of cracks cannot be explained by the elastic behavior of the film but rather by the viscoelastic relaxation of the film during pyrolysis and sintering. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
This work reports the preparation and characterization of (SnO2) thin films doped with 7 mol% Sb2O3. The films were prepared by the polymeric precursor method, and deposited by spin-coating, all of them were deposited on amorphous silica substrate. Then, we have studied the thickness effect on the microstrutural, optical and electric properties of these samples. The microstructural characterization was carried out by X-ray diffraction (XRD) and scanning tunneling microscopy (STM). The electrical resistivity measurements were obtained by the van der Pauw four-probe method. UV-visible spectroscopy and ellipsometry were carried out for the optical characterization. The films present nanometric grains in the order of 13 nm, and low roughness. The electrical resistivity decreased with the increase of the film thickness and the smallest measured value was 6.5 x 10(-3) Omega cm for the 988 nm thick film. The samples displayed a high transmittance value of 80% in the visible region. The obtained results show that the polymeric precursor method is effective for the TCOs manufacturing.
Resumo:
It is presented a study conducted on the physical and electrochemical properties of fluorinated a-C:H films deposited onto a commercial aluminum alloy (AA 5052). The coatings were deposited from mixtures of 91% of acetylene and 9% of argon by plasma immersion ion implantation and deposition technique, PIIID. Total gas pressure was 44 Pa and deposition time (t(dep)) was varied from 300 to 1200 s. The depositing plasmas were generated by the application of radiofrequency power (13.56 MHz, 100W) to the upper electrode and high voltage negative pulses (2400 V. 300 Hz) to the sample holder. Fluorine was incorporated in a post-deposition plasma treatment (13.56 MHz, 70W, 13 Pa) generated from sulfur hexafluoride atmosphere. Chemical structure and composition of the films were investigated using infrared reflectance/absorbance spectroscopy and X-ray photoelectron spectroscopy. The corrosion resistance of the layers was determined by electrochemical impedance spectroscopy (EIS) in a 3.5% NaCl solution, at room temperature. Films presented good adhesion to the substrates and are classified as hydrogenated amorphous carbon (a-C:H) with oxygen traces. Fluorine was detected in all the samples after the post-deposition treatment being its proportion independent on the deposition time. Film thickness presented different tendencies with t(dep), revealing the variation of the deposition rate as a function of the deposition time. Such fluorinated a-C:H films improved the corrosion resistance of the aluminum surface. In a general way the corrosion resistance was higher for films prepared with lower deposition times. The variation of sample temperature with t(dep) was found to be decisive for the concentration of defects in the films and, consequently, for the performance of the samples in electrochemical tests. Results are interpreted in terms of the energy delivered to the growing layer by ionic bombardment. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the theoretical and experimental results for oxide thin film growth on titanium films previously deposited over glass substrate. Ti films of thickness 0.1 μm were heated by Nd:YAG laser pulses in air. The oxide tracks were created by moving the samples with a constant speed of 2 mm/s, under the laser action. The micro-topographic analysis of the tracks was performed by a microprofiler. The results taken along a straight line perpendicular to the track axis revealed a Gaussian profile that closely matches the laser's spatial mode profile, indicating the effectiveness of the surface temperature gradient on the film's growth process. The sample's micro-Raman spectra showed two strong bands at 447 and 612 cm -1 associated with the TiO 2 structure. This is a strong indication that thermo-oxidation reactions took place at the Ti film surface that reached an estimated temperature of 1160 K just due to the action of the first pulse. The results obtained from the numerical integration of the analytical equation which describes the oxidation rate (Wagner equation) are in agreement with the experimental data for film thickness in the high laser intensity region. This shows the partial accuracy of the one-dimensional model adopted for describing the film growth rate. © 2001 Elsevier Science B.V.
Resumo:
Lead zirconate titanate Pb(Zr 0.50Ti 0.50)O 3 (PZT) thin films were deposited by a polymeric chemical method on Pt(111)/Ti/SiO2/Si substrates to understand the mechanisms of phase transformations and the effect of film thickness on the structure, dielectric and piezoelectric properties in these films. PZT films pyrolyzed at temperatures higher than 350 °C present a coexistence of pyrochlore and perovskite phases, while only perovskite phase grows in films pyrolyzed at temperatures lower than 300 °C. For pyrochlore-free PZT thin films, a small (100) orientation tendency near the film-substrate interface was observed. Finally, we demonstrate the existence of a self-polarization effect in the studied PZT thin films. Results suggest that Schottky barriers and/or mechanical coupling near the filmsubstrate interface are not primarily responsible for the observed self-polarization effect in our films. © 2012 IEEE.
Resumo:
Lead zirconate titanate Pb(Zr0.50Ti0.50)O3 (PZT) thin films were deposited by a polymeric chemical method on Pt(111)/Ti/SiO2/Si substrates to understand the mechanisms of phase transformations and the effect of film thickness on the structure, dielectric, and piezoelectric properties in these films. PZT films pyrolyzed at temperatures higher than 350 °C present a coexistence of pyrochlore and perovskite phases, while only perovskite phase grows in films pyrolyzed at temperatures lower than 300 °C. For pyrochlore-free PZT thin films, a small (100)-orientation tendency near the film-substrate interface was observed. Finally, we demonstrate the existence of a self-polarization effect in the studied PZT thin films. The increase of self-polarization with the film thickness increasing from 200 nm to 710 nm suggests that Schottky barriers and/or mechanical coupling near the film-substrate interface are not primarily responsible for the observed self-polarization effect in our films. © 2013 AIP Publishing LLC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)