165 resultados para Fc receptors
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hypoxia causes a regulated decrease in body temperature (Tb). There is circumstantial evidence that the neurotransmitter serotonin (5-HT) in the anteroventral preoptic region (AVPO) mediates this response. However, which 5-HT receptor(s) is (are) involved in this response has not been assessed. Thus, we investigated the participation of the 5-HT receptors (5-HT(1), 5-HT(2), and 5-HT(7)) in the AVPO in hypoxic hypothermia. To this end, Tb of conscious Wistar rats was monitored by biotelemetry before and after intra-AVPO microinjection of methysergide (a 5-HT(1) and 5-HT(2) receptor antagonist, 0.2 and 2 mu g/100 nL), WAY-100635 (a 5-HT(1A) receptor antagonist, 0.3 and 3 mu g/100 nL), and SB-269970 (a 5-HT(7) receptor antagonist, 0.4 and 4 mu/100 nL), followed by 60 min of hypoxia exposure (7% O(2)). During the experiments, the mean chamber temperature was 24.6 +/- 0.7 degrees C (mean +/- SE) and the mean room temperature was 23.5 +/- 0.8 degrees C (mean +/- SE). Intra-AVPO microinjection of vehicle or 5-HT antagonists did not change Tb during normoxic conditions. Exposure of rats to 7% of inspired oxygen evoked typical hypoxia-induced hypothermia after vehicle microinjection, which was not affected by both doses of methysergide. However, WAY-100635 and SB-269970 treatment attenuated the drop in Tb in response to hypoxia. The effect was more pronounced with the 5-HT7 antagonist since both doses (0.4 and 4 mu g/0.1 mu L) were capable of attenuating the hypothermic response. As to the 5-HT(1A) antagonist, the attenuation of hypoxia-induced hypothermia was only observed at the higher dose. Therefore, the present results are consistent with the notion that 5-HT acts on both 5-HT(1A) and 5-HT7 receptors in the AVPO to induce hypothermia, during hypoxia. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Hypothalamus is a site of integration of the hypoxic and thermal stimuli on breathing and there is evidence that serotonin (5-HT) receptors in the anteroventral preoptic region (AVPO) mediate hypoxic hypothermia. Once 5-HT is involved in the hypoxic ventilatory response (HVR), we investigated the participation of the 5-HT receptors (5-HT1, 5-HT2 and 5-HT7) in the AVPO in the HVR. To this end, pulmonary ventilation (V-E) of rats was measured before and after intra-AVPO microinjection of methysergide (a 5-HT1 and 5-HT2 receptor antagonist), WAY-100635 (a 5-HT1A receptor antagonist) and SB-269970 (a 5-HT7 receptor antagonist), followed by 60 min of hypoxia exposure (7% O-2). Intra-AVPO microinjection of vehicles or 5-HT antagonists did not change VE during normoxic conditions. Exposure of rats to 7% O-2 evoked typical hypoxia-induced hyperpnea after vehicle microinjection, which was not affected by methysergide. WAY-100635 and SB-269970 treatment caused an increased HVR, due to a higher tidal volume. Therefore, the current data provide the evidence that 5-HT acting on 5-HT1A and 5-HT7 receptors in the AVPO exert an inhibitory modulation on the HVR. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We evaluated the involvement of dorsal hippocampus (DH) 5-HT1A receptors in the mediation of the behavioral effects caused by the pharmacological manipulation of 5-HT neurons in the median raphe nucleus (MRN). To this end, we used the rat elevated T-maze test of anxiety. The results showed that intra-DH injection of the 5-HT1A/7 agonist 8-OH-DPAT facilitated inhibitory avoidance, an anxiogenic effect, without affecting escape. Microinjection of the 5-HT1A antagonist WAY-100635 was ineffective. In the elevated T-maze, inhibitory avoidance and escape have been related to generalized anxiety and panic disorders, respectively. Intra-MRN administration of the excitatory aminoacid kainic acid, which non-selectively stimulates 5-HT neurons in this brain area facilitated inhibitory avoidance and impaired escape performance, but also affected locomotion. Intra-MRN injection of WAY-100635, which has a disinhibitory effect on the activity of 5-HT neurons in this midbrain area, only facilitated inhibitory avoidance. Preadministration of WAY-100635 into the DH blocked the behavioral effect of intra-MRN injection of WAY-100635, but not of kainic acid. These results indicate that DH 5-HT1A receptors mediate the anxiogenic effect induced by the selective stimulation of 5-HT neurons in the MRN. (c) 2007 Elsevier B.V. and ECNP. All rights reserved.
Resumo:
Recent results from our laboratory have shown that 30-bites social conflict in mice produces a high-intensity, short-term analgesia which is attenuated by systemically injected 5-HT1A receptor agonists, such as BAY R 1531 (6-methoxy-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz(c,d)indole hydrochloride) and gepirone. The present study investigated the effects of these drugs, as well as the 5-HT1A receptor antagonist WAY 100135 (N-tert-butyl-3-(4-(2-methoxyphenyl)piperazine-1-yl)-2-phenylpropanamide) injected into the midbrain periaqueductal gray matter of mice on 30-bites analgesia. Four to five days after guide-cannula implantation, each mouse received microinjection of gepirone (30 nmol/0.2 mu l), BAY R 1531 (10 nmol/0.2 mu l), WAY 100135 (10 nmol/0.2 mu l), saline (0.9% NaCl) or vehicle (saline + 4% Tween 80) 5 min before either an aggressive (30 bites) or a non-aggressive interaction. Nociception was assessed by the tail-flick test made before as well as 1, 5, 10 and 20 min after social interaction. The full 5-HT1A receptor agonist BAY R 1531 blocked, whereas, WAY 100135 and gepirone intensified 30-bites analgesia, Neither non-aggressive interaction, per se, nor the three compounds given after this type of social interaction significantly changed nociception. These results indicate that 5-HT1A receptors in the periaqueductal gray inhibit analgesia induced by social conflict in mice. (C) 1998 Elsevier B.V. B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)