64 resultados para Excitatory Synapses

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of alpha-pompilidotoxin (alpha-PMTX), a new neurotoxin isolated from the venom of a solitary wasp, were studied on the neuromuscular synapses in lobster walking leg and the rat trigeminal ganglion (TG) neurons. Paired intracellular recordings from the presynaptic axon terminals and the innervating lobster leg muscles revealed that alpha-PMTX induced long bursts of action potentials in the presynaptic axon, which resulted in facilitated excitatory and inhibitory synaptic transmission. The action or alpha-PMTX was distinct from that of other known facilitatory presynaptic toxins, including sea anemone toxins and alpha-scorpion toxins, which modify the fast inactivation of Na+ current. We further characterized the action of alpha-PMTX on Na+ channels by whole-cell recordings from rat trigeminal neurons. We found that alpha-PMTX stowed the Na+ channels inactivation process without changing the peak current-voltage relationship or the activation time course of tetrodotoxin (TTX)-sensitive Na+ currents, and that alpha-PMTX had voltage-dependent effects on the rate of recovery from Na+ current inactivation and deactivating tail currents. The results suggest that alpha-PMTX slows or blocks conformational changes required for fast inactivation of the Na+ channels on the extracellular surface. The simple structure of alpha-PMTX, consisting of 13 amino acids, would be advantageous for understanding the functional architecture of Na+ channel protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kainoid amino acids are agonists of the AMPA/kainate receptors and exhibit highly potent neuroexcitatory activity. From the results of extensive structure-activity relationship studies, we previously postulated that the C4-substituent of the kainoid amino acids interacts with an allosteric site of the glutamate receptor with electron-donating character. In order to investigate the mode of action in more detail, molecular orbital calculation for model compounds of the kainoid were performed. The results indicated that the HOMO energy level of the C4-substituent is involved in the potent neuroexcitatory activity, thus supporting our hypothesis. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Searching for an understanding of how the brain supports conscious processes, cognitive scientists have proposed two main classes of theory: Global Workspace and Information Integration theories. These theories seem to be complementary, but both still lack grounding in terms of brain mechanisms responsible for the production of coherent and unitary conscious states. Here we propose following James Robertson's "Astrocentric Hypothesis" - that conscious processing is based on analog computing in astrocytes. The "hardware" for these computations is calcium waves mediated by adenosine triphosphate signaling. Besides presenting our version of this hypothesis, we also review recent findings on astrocyte morphology that lend support to their functioning as Local Hubs (composed of protoplasmic astrocytes) that integrate synaptic activity, and as a Master Hub (composed, in the human brain, by a combination of interlaminar, fibrous, polarized and varicose projection astrocytes) that integrates whole-brain activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite recent advances, the mechanisms of neurorespiratory control in amphibians are far from understood. One of the brainstem structures believed to play a key role in the ventilatory control of anuran amphibians is the nucleus isthmi (NI). This nucleus is a mesencephalic structure located between the roof of the midbrain and the cerebellum, which differentiates during metamorphosis; the period when pulmonary ventilation develops in bullfrogs. It has been recently suggested that the NI acts to inhibit hypoxic and hypercarbic drives in breathing by restricting increases in tidal volume. This data is similar to the influence of two pontine structures of mammals, the locus coeruleus and the nucleus raphe magnus. The putative mediators for this response are glutamate and nitric oxide. Microinjection of kynurenic acid (an ionotropic receptor antagonist of excitatory amino acids) and L-NAME (a non-selective NO synthase inhibitor) elicited increases in the ventilatory response to hypoxia and hypercarbia. This article reviews the available data on the role of the NI in the control of ventilation in amphibians. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluated the involvement of dorsal hippocampus (DH) 5-HT1A receptors in the mediation of the behavioral effects caused by the pharmacological manipulation of 5-HT neurons in the median raphe nucleus (MRN). To this end, we used the rat elevated T-maze test of anxiety. The results showed that intra-DH injection of the 5-HT1A/7 agonist 8-OH-DPAT facilitated inhibitory avoidance, an anxiogenic effect, without affecting escape. Microinjection of the 5-HT1A antagonist WAY-100635 was ineffective. In the elevated T-maze, inhibitory avoidance and escape have been related to generalized anxiety and panic disorders, respectively. Intra-MRN administration of the excitatory aminoacid kainic acid, which non-selectively stimulates 5-HT neurons in this brain area facilitated inhibitory avoidance and impaired escape performance, but also affected locomotion. Intra-MRN injection of WAY-100635, which has a disinhibitory effect on the activity of 5-HT neurons in this midbrain area, only facilitated inhibitory avoidance. Preadministration of WAY-100635 into the DH blocked the behavioral effect of intra-MRN injection of WAY-100635, but not of kainic acid. These results indicate that DH 5-HT1A receptors mediate the anxiogenic effect induced by the selective stimulation of 5-HT neurons in the MRN. (c) 2007 Elsevier B.V. and ECNP. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to investigate the relationship between behaviors elicited by chemical stimulation of the dorsal periaqueductal gray (dorsal PAG) and spontaneous defensive behaviors to a predator, the excitatory amino acid D,L-homocysteic acid (5 nmol in 0.1 mu l), was infused into the dorsal PAG and behavioral responses of mice were evaluated in two different situations, a rectangular novel chamber or the Mouse Defense Test Battery (MDTB) apparatus. During a 1-min period following drug infusion, more jumps were made in the chamber than in the MDTB runway but running time and distance traveled were significantly higher in the runway. Animals were subsequently tested using the standard MDTB procedure (anti-predator avoidance, chase and defensive threat/attack). No drug effects on these measures were significant. In a further test in the MDTB apparatus, the pathway of the mouse during peak locomotion response was blocked 3 times by the predator stimulus (anesthetized rat) to determine if the mouse would avoid contact. Ninety percent of D,L-homocysteic treated animals made direct contact with the stimulus (rat), indicating that D,L-homocysteic-induced running is not guided by relevant (here, threat) stimuli. These results indicate that running as opposed to jumping is the primary response in mice injected with D,L-homocysteic into the dorsal PAG when the environment enables flight. However, the lack of responsivity to the predator during peak locomotion suggests that D,L-homocysteic-stimulation into the dorsal PAG does not induce normal antipredator flight. (c) 2006 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

JUSTIFICATIVA E OBJETIVOS: A dor crônica é um desafio para a Medicina atual. Novos métodos e medicamentos têm sido propostos com o intuito de controlar os sintomas álgicos. A via de administração subaracnóidea tem se mostrado como uma alternativa viável e segura, embora necessite continuamente ser objeto de estudo de muitos pesquisadores. O objetivo deste trabalho é fazer uma revisão dos medicamentos disponíveis no arsenal terapêutico já consagrados pelo uso e os que se mostram promissores na atualidade para a prática clínica diária. CONTEÚDO: Nesta revisão são avaliados vários fármacos que apresentam ação analgésica quando utilizada via neuroeixo. Opióides, anestésicos locais, agonistas alfa2-adrenérgicos, antagonistas dos aminoácidos excitatórios e inibitórios, acetilcolina, inibidores da acetilcolinesterase, bloqueadores dos canais de cálcio, adenosina, serotonina, antidepressivos tricíclicos e inibidores da síntese de prostaglandinas são analisados no que concerne aos seus efeitos farmacológicos, incluindo os indesejáveis. CONCLUSÕES: Muitos avanços foram registrados no controle dos sintomas álgicos após a utilização das substâncias citadas por via raquidiana, onde certamente algumas serão aproveitadas e enriquecerão o arsenal terapêutico e outras relegadas temporária ou definitivamente. Entretanto, ainda serão necessários muitos estudos clínicos e experimentais para que estes conhecimentos possam ser incorporados e utilizados com segurança pelos profissionais que lidam com o tratamento da dor crônica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nucleus of the solitary tract (NTS) is the site of the first synapse of cardiovascular afferent fibers in the central nervous system. Important mechanisms for cardiovascular regulation are also present in the caudal pressor area (CPA) localized at the caudal end of the ventrolateral medulla. In the present study we sought to investigate the role of the commissural subnucleus of the NTS (commNTS) on pressor and tachycardic responses induced by L-glutamate injected into the CPA. Male Holtzman rats (n=8 rats/group) anesthetized with urethane (1.2 g/kg of body weight, iv) received injections of the GABAA receptor agonist muscimol into the commNTS. Unilateral injection of L-glutamate (10 nmol/ 100 nL) into the CPA increased mean arterial pressure (MAP, 31 4 mm Hg, vs. saline: 3 +/- 2 mm Hg) and heart rate (HR, 44 8 bpm, vs. saline: 10 7 bpm). inhibition of commNTS neurons with muscimol (120 pmol/60 nL) abolished the increase in MAP (9 4 mm Hg) and HR (17 7 bpm) produced by L-glutamate into the CPA. The present results suggest that the pressor and tachycardic responses to CPA activation are dependent on commNTS mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The excitatory amino acid L-glutamate injected into the nucleus of the solitary tract (NTS) in unanesthetized rats similar to peripheral chemoreceptor activation increases mean arterial pressure (MAP) and reduces heart rate. In this study, we investigated the effects of acute (I day) and chronic (15 days) electrolytic lesions of the preoptic-periventricular tissue surrounding the anteroventral third ventricle (AV3V region) on the pressor and bradycardic responses induced by injections of L-glutamate into the NTS or peripheral chemoreceptor activation in unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the NTS were used. Differently from the pressor responses (28 +/- 3 mm Hg) produced by injections into the NTS of sham-lesioned rats, L-glutamate (5 nmol/ 100 nl) injected into the NTS reduced MAP (-26 +/- 8 mm Hg) or produced no effect (2 7 turn Hg) in acute and chronic AV3V-lesioned rats, respectively. The bradycardia to L-glutamate into the NTS and the cardiovascular responses to chemoreflex activation with intravenous potassium cyanide or to baroreflex activation with intravenous phenylephrine or sodium nitroprusside were not modified by AV3V lesions. The results show that the integrity of the AV3V region is essential for the pressor responses to L-glutamate into the NTS but not for the pressor responses to chemoreflex activation, suggesting dissociation between the central mechanisms involved in these responses. (C) 2004 Elsevier B.V. All rights reserved.