70 resultados para Excitation energies
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Recent experimental data on first-forbidden charge-exchange resonances are discussed in the framework of a schematic model. We also evaluate the screening of the weak coupling constants induced by both the giant resonances and the Δ-isobar. It is shown that the last effect does not depend on the multipolarity of the one-particle moment. Due to the same reason, the fraction of the reaction strength pushed up into the Δ-resonance region is always the same regardless of the quantum numbers carried by the excitation. Simple expressions are derived for the dependence of the excitation energies of the first-forbidden giant resonances on the mass number and isospin of the target. The model reproduces consistently both the Gamow-Teller and the first-forbidden resonances. © 1983.
Resumo:
Tin dioxide (SnO2) thin film photoconductivity spectra were measured for a large temperature range using a deuterium source, the intensity of photocurrent spectra in the range 200-400 nm is temperature dependent, and the photocurrent increases in the ultraviolet even for illumination with photon energies much higher than the bandgap transition. This behavior is related to recombination of photogenerated electron-hole pairs with oxygen adsorbed at grain boundaries, which is consistent with nanoscopic crystallite size of sol-gel deposited films. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Positronium formation and target excitation in positron-helium scattering have been investigated using the close-coupling approximation with realistic wave functions for the positronium and helium atoms. The following eight states have been used in the close-coupling scheme: He(1s1s), He(1s2(1)s), He(1s2(1)p), He(1s3(1)s), He(1s3(1)p), Ps(1s), Ps(2s), and Ps(2p), where Ps stands for the positronium atom. Calculations are reported of differential cross sections for elastic scatering,, inelastic target excitation to He(1s2(1)s) and He(1s2(1)p) slates, and rearrangement transition to Ps(1s), Ps(2s), and Ps(2p) states for incident positron energies between 40 and 200 eV. The coincidence parameters for the transition to the He(1s2(1)p) state of helium are also reported and briefly discussed. [S1050-2947(98)05101-4].
Resumo:
Monochromatic light excitation in conjunction with thermally stimulated depolarization current measurements are applied to indirect bandgap AlxGa1-xAs. The obtained average activation energy for dipole relaxation is in very close agreement with the DX center binding energy. Monochromatic light induces state transition in the defect and makes possible the identification of dipoles observed in the dark. Charge relaxation currents are destroyed by photoionization of Al0.5Ga0.5As using either 647 nm Kr+ or 488 nm Ar+ laser lines, which are above the DX center threshold photoionization energy. It suggests that correlation may exist among charged donor states DX--d+. Sample resistance as a function of temperature is also measured in the dark and under illumination and shows the probable X valley effective mass state participation in the electron trapping. Ionization with energies of 0.8 eV and 1.24 eV leads to striking current peak shifts in the thermally stimulated depolarization bands. Since vacancies are present in this material, they may be responsible for the secondary band observed in the dark as well as participation in the light induced recombination process.
Resumo:
The effect of manganese on the vibrational properties of Ga(1-x)Mn(x)N (0 <= x <= 0.18) films has been investigated by Raman scattering using 488.0 and 632.8 nm photon excitations. The first-order transverse and longitudinal optical GaN vibrational bands were observed in the whole composition range using both excitations, while the corresponding overtones, as well as a prominent peak located in 1238 cm(-1) (153.5 meV) were only observed in the Mn-containing films under 488.0 nm excitation. We propose that the peak observed at 1238 cm(-1) is due to resonant Mn local vibrational modes, the excitation process being related to electronic transitions involving the Mn acceptor band.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper shows the results of experimental investigations of three-phase banks composed of single-phase transformers and three-phase three-limb core transformers under simultaneous alternating and direct current excitations, for several winding connections. Harmonic analysis of excitation currents for different de saturation levels is performed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We have investigated a high-resolution Fourier transform (FT) absorption spectrum of the (CH3OH)-C-13 isotopomer of methanol from 400 to 950 cm(-1) with the Ritz program. We present the assignments of 7160 transitions, 3021 of which belong to Asymmetry, and 4139 to E-symmetry. These transitions occur between states labeled by K quantum numbers up to 14, and by torsional quantum numbers n up to 4. The Ritz program evaluated the energies of the 4684 involved levels with an accuracy of the order of 10(-4) cm(-1). All of the assigned lines correspond to transitions involving torsionally excited levels within the ground small-amplitude vibrational state. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Background: Ultrasonic excitation (US) was applied to glass ionomer cement (GIC) during early set time to increase the advantageous properties of this material. Purpose: The aim of this in vitro study was to assess the inner porosity of GIC after US. Study design: A total of 16 specimens, for each material, were prepared from high-viscosity GIC Fuji IX GP, Ketac Molar, and Ketac Molar Easymix. Half of these specimens (n = 8) received 30 s of US during the initial cement setting. After completion of the material setting, specimens were fractured and observed by scanning electronic microscopy to quantitatively assay porosity inside the material using Image J software. Results: Statistical data analysis revealed that US reduced the porosity for all tested materials (P <= 0.05). The following reductions (expressed in percentages) were achieved: Fuji IX-from 3.9% to 2.8%; Ketac Molar Easy Mix-from 4.4% to 2.6%, and Ketac Molar-from 2.4% to 1.6%. Conclusion: Under the tested conditions, US was an effective method for porosity reduction inside the material. Microsc. Res. Tech. 74:54-57, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Calculation for the electronic excitation of the ground state of H-2 to B (1) Sigma(u)(+) and b(3) Sigma(u)(+) states by positronium- (Ps) atom impact has been carried out using the first Born approximation considering discrete Ps excitations up to n = 6 and Ps ionization in the final state. To include the effect of electron exchange, we propose an alternative approximation scheme in the light of the Rudge approach, which takes into account the composite nature of the Ps-atom projectile.
Resumo:
We study the elastic scattering of positronium atoms by hydrogen atoms at medium energies using partial-wave Born-Oppenheimer (BO) exchange amplitudes and report accurate BO cross sections in the energy range 0 to 60 eV. The present BO results agree with a 22-state R-matrix and a five-state coupled-channel model potential calculation, but disagree strongly with a conventional close-coupling calculation as well as its input BO amplitudes at medium energies.
Resumo:
The recent theoretical and experimental activities in positronium (Ps) scattering by atoms and molecules are reviewed with special emphasis at low energies. We critically compare the results of different groups - theoretical and experimental. The theoretical approaches considered include the R-matrix and close-coupling methods applied to Ps-H, Ps-He and Ps-Li scattering, and a coupled-channel approach with a nonlocal model potential for Ps scattering by H, He, H-2, Ne, Ar, Li, Na, K, Rb, Cs and Ps and for pickoff quenching in Ps-He scattering. Results for scattering lengths, partial. total and differential cross-sections as well as resonance and binding energies in different systems are discussed. (C) 2002 Elsevier B.V. B.V. All rights reserved.