340 resultados para Electric power systems
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This work presents a methodology to analyze electric power systems transient stability for first swing using a neural network based on adaptive resonance theory (ART) architecture, called Euclidean ARTMAP neural network. The ART architectures present plasticity and stability characteristics, which are very important for the training and to execute the analysis in a fast way. The Euclidean ARTMAP version provides more accurate and faster solutions, when compared to the fuzzy ARTMAP configuration. Three steps are necessary for the network working, training, analysis and continuous training. The training step requires much effort (processing) while the analysis is effectuated almost without computational effort. The proposed network allows approaching several topologies of the electric system at the same time; therefore it is an alternative for real time transient stability of electric power systems. To illustrate the proposed neural network an application is presented for a multi-machine electric power systems composed of 10 synchronous machines, 45 buses and 73 transmission lines. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents a methodology for the placement and sizing evaluation of distributed generation (DG) in electric power systems. The candidate locations for DG placement are identified on the bases of Locational Marginal Prices (LMP's) obtained from an optimal power flow solution. The problem is formulated for two different objectives: social welfare maximization and profit maximization. For each DG unit an optimal placement is identified for each of the objectives.
Resumo:
This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based on ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network operation consists of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while the analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solving complex problems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plasticity and the stability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is proposed seeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when compared to the neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The conventional Newton and fast decoupled power flow (FDPF) methods have been considered inadequate to obtain the maximum loading point of power systems due to ill-conditioning problems at and near this critical point. It is well known that the PV and Q-theta decoupling assumptions of the fast decoupled power flow formulation no longer hold in the vicinity of the critical point. Moreover, the Jacobian matrix of the Newton method becomes singular at this point. However, the maximum loading point can be efficiently computed through parameterization techniques of continuation methods. In this paper it is shown that by using either theta or V as a parameter, the new fast decoupled power flow versions (XB and BX) become adequate for the computation of the maximum loading point only with a few small modifications. The possible use of reactive power injection in a selected PV bus (Q(PV)) as continuation parameter (mu) for the computation of the maximum loading point is also shown. A trivial secant predictor, the modified zero-order polynomial which uses the current solution and a fixed increment in the parameter (V, theta, or mu) as an estimate for the next solution, is used in predictor step. These new versions are compared to each other with the purpose of pointing out their features, as well as the influence of reactive power and transformer tap limits. The results obtained with the new approach for the IEEE test systems (14, 30, 57 and 118 buses) are presented and discussed in the companion paper. The results show that the characteristics of the conventional method are enhanced and the region of convergence around the singular solution is enlarged. In addition, it is shown that parameters can be switched during the tracing process in order to efficiently determine all the PV curve points with few iterations. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The parameterized fast decoupled power flow (PFDPF), versions XB and BX, using either theta or V as a parameter have been proposed by the authors in Part I of this paper. The use of reactive power injection of a selected PVbus (Q(PV)) as the continuation parameter for the computation of the maximum loading point (MLP) was also investigated. In this paper, the proposed versions obtained only with small modifications of the conventional one are used for the computation of the MLP of IEEE test systems (14, 30, 57 and 118 buses). These new versions are compared to each other with the purpose of pointing out their features, as well as the influence of reactive power and transformer tap limits. The results obtained with the new approaches are presented and discussed. The results show that the characteristics of the conventional FDPF method are enhanced and the region of convergence around the singular solution is enlarged. In addition, it is shown that these versions can be switched during the tracing process in order to efficiently determine all the PV curve points with few iterations. A trivial secant predictor, the modified zero-order polynomial, which uses the current solution and a fixed increment in the parameter (V, theta, or mu) as an estimate for the next solution, is used for the predictor step. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This work presents a procedure for transient stability analysis and preventive control of electric power systems, which is formulated by a multilayer feedforward neural network. The neural network training is realized by using the back-propagation algorithm with fuzzy controller and adaptation of the inclination and translation parameters of the nonlinear function. These procedures provide a faster convergence and more precise results, if compared to the traditional back-propagation algorithm. The adaptation of the training rate is effectuated by using the information of the global error and global error variation. After finishing the training, the neural network is capable of estimating the security margin and the sensitivity analysis. Considering this information, it is possible to develop a method for the realization of the security correction (preventive control) for levels considered appropriate to the system, based on generation reallocation and load shedding. An application for a multimachine power system is presented to illustrate the proposed methodology. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Optimised placement of control and protective devices in distribution networks allows for a better operation and improvement of the reliability indices of the system. Control devices (used to reconfigure the feeders) are placed in distribution networks to obtain an optimal operation strategy to facilitate power supply restoration in the case of a contingency. Protective devices (used to isolate faults) are placed in distribution systems to improve the reliability and continuity of the power supply, significantly reducing the impacts that a fault can have in terms of customer outages, and the time needed for fault location and system restoration. This paper presents a novel technique to optimally place both control and protective devices in the same optimisation process on radial distribution feeders. The problem is modelled through mixed integer non-linear programming (MINLP) with real and binary variables. The reactive tabu search algorithm (RTS) is proposed to solve this problem. Results and optimised strategies for placing control and protective devices considering a practical feeder are presented. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work the problem of defects location in power systems is formulated through a binary linear programming (BLP) model based on alarms historical database of control and protection devices from the system control center, sets theory of minimal coverage (AI) and protection philosophy adopted by the electric utility. In this model, circuit breaker operations are compared to their expected states in a strictly mathematical manner. For solving this BLP problem, which presents a great number of decision variables, a dedicated Genetic Algorithm (GA), is proposed. Control parameters of the GA, such as crossing over and mutation rates, population size, iterations number and population diversification, are calibrated in order to obtain efficiency and robustness. Results for a test system found in literature, are presented and discussed. © 2004 IEEE.
Resumo:
This work deals with the effects of the series compensation on the electric power system for small-signal stability studies. Therefore, the system is modeled admitting the existence of the compensation and then, the equations are linearized and a linear model is obtained for a single machine-infinite bus power system with a compensator installed. The resulting model with nine defined constants is very similar to the Heffron & Phillips linear model widely used on the existent literature. Finally, simulations are executed for an example system, to analyze the behavior of these constants when loading the system. © 2004 IEEE.
Resumo:
The problem of reconfiguration of distribution systems considering the presence of distributed generation is modeled as a mixed-integer linear programming (MILP) problem in this paper. The demands of the electric distribution system are modeled through linear approximations in terms of real and imaginary parts of the voltage, taking into account typical operating conditions of the electric distribution system. The use of an MILP formulation has the following benefits: (a) a robust mathematical model that is equivalent to the mixed-integer non-linear programming model; (b) an efficient computational behavior with exiting MILP solvers; and (c) guarantees convergence to optimality using classical optimization techniques. Results from one test system and two real systems show the excellent performance of the proposed methodology compared with conventional methods. © 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a methodology to achieve integrated planning and projects for secondary distribution circuits. The planning model is formulated as a mixed integer nonlinear programming problem (MINLP). In order to resolve this problem, a tabu search (TS) algorithm is used, with a neighborhood structure developed to explore the physical characteristics of specific geographies included in the planning and expansion of secondary networks, thus obtaining effective solutions as well as low operating costs and investments. The project stage of secondary circuits consists of calculating the mechanical efforts to determine the support structures of the primary and secondary distribution systems and determining the types of structures that should be used in the system according to topological and electrical parameters of the network and, therefore, accurately assessing the costs involved in the construction and/or reform of secondary systems. A constructive heuristic based on information of the electrical and topological conditions between the medium voltage and low voltage systems is used to connect the primary systems and secondary circuits. The results obtained from planning and design simulations of a real secondary system of electric energy distribution are presented.
Resumo:
The system reliability depends on the reliability of its components itself. Therefore, it is necessary a methodology capable of inferring the state of functionality of these components to establish reliable indices of quality. Allocation models for maintenance and protective devices, among others, have been used in order to improve the quality and availability of services on electric power distribution systems. This paper proposes a methodology for assessing the reliability of distribution system components in an integrated way, using probabilistic models and fuzzy inference systems to infer about the operation probability of each component. © 2012 IEEE.
Resumo:
This paper presents a mixed integer nonlinear programming multiobjective model for short-term planning of distribution networks that considers in an integrated manner the following planning activities: allocation of capacitor banks; voltage regulators; the cable replacement of branches and feeders. The objective functions considered in the proposed model are: to minimize operational and investment costs and minimize the voltage deviations in the the network buses, subject to a set of technical and operational constraints. A multiobjective genetic algorithm based on a Non-Dominated Sorting Genetic Algorithm (NSGA-II) is proposed to solve this model. The proposed mathematical model and solution methodology is validated testing a medium voltage distribution system with 135 buses. © 2013 Brazilian Society for Automatics - SBA.